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ABSTRACT

Southeast U.S. cold season severe weather events can be difficult to predict because of the marginality of

the supporting thermodynamic instability in this regime. The sensitivity of this environment to prognoses of

instability encourages additional research on ways in which mesoscale models represent turbulent processes

within the lower atmosphere that directly influence thermodynamic profiles and forecasts of instability. This

work summarizes characteristics of the southeast U.S. cold season severe weather environment and planetary

boundary layer (PBL) parameterization schemes used in mesoscale modeling and proceeds with a focused

investigation of the performance of nine different representations of the PBL in this environment by com-

paring simulated thermodynamic and kinematic profiles to observationally influenced ones. It is demon-

strated that simultaneous representation of both nonlocal and local mixing in the Asymmetric Convective

Model, version 2 (ACM2), scheme has the lowest overall errors for the southeast U.S. cold season tornado

regime. For storm-relative helicity, strictly nonlocal schemes provide the largest overall differences from

observationally influenced datasets (underforecast).Meanwhile, strictly local schemes yield themost extreme

differences from these observationally influenced datasets (underforecast) in a mean sense for the low-level

lapse rate and depth of the PBL, on average. A hybrid local–nonlocal scheme is found to mitigate these mean

difference extremes. These findings are traced to a tendency for local schemes to incompletely mix the PBL

while nonlocal schemes overmix the PBL, whereas the hybrid schemes represent more intermediate mixing

in a regime where vertical shear enhances mixing and limited instability suppresses mixing.

1. Introduction

Accurately representing turbulent processes occurring

within the planetary boundary layer (PBL) of the lower tro-

posphere is of particular importance for the southeast U.S.

cold season severe thunderstorm environment (Cohen et al.

2015, hereafter CCCB15). In southeast U.S. cold season

severe thunderstorm environments (hereafter SE-

COLD), thermodynamic instability is often limited amid

ample vertical wind shear, and the marginality of ther-

modynamic instability for the SECOLD regime is found

to be a distinguishing characteristic of this environment

compared to other severe thunderstorm environments

(e.g., CCCB15). Small forecast inaccuracies in such sce-

narios involving the marginality of a parameter support-

ing high-impact weathermay be of particular importance,

and a source of these inaccuracies comes from a model’s

representation of the low-level wind profile and the low-

level thermodynamic profile (e.g., Jankov et al. 2005;
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Stensrud 2007; Hacker 2010; Hu et al. 2010; Nielsen-

Gammon et al. 2010). Ultimately, this motivates the need

to minimize errors in forecasting the vertical atmospheric

structure (the boundary layer in particular) to better depict

characteristics of the convective environment and sub-

sequently increase the ability to more accurately assess a

severe weather threat (e.g., Kain et al. 2003, 2005, 2013).

Turbulent eddies facilitate the exchanges of momen-

tum, heat, and moisture in the PBL within which prop-

erties of surface conditions are communicated on time

scales under an hour (e.g., Stull 1988; Stensrud 2007).

Because these eddies cannot be explicitly resolved by

mesoscale (grid lengths typically at least 4 km) models

that have been in use operationally for many years, their

effects are represented using PBL parameterization

schemes. The theoretical development of these schemes is

addressed by multiple sources (e.g., Stull 1988; Holton

2004; Stensrud 2007). The Advanced Research version of

the Weather Research and Forecasting Model (WRF-

ARW; Skamarock et al. 2008) offers options of different

PBL parameterization schemes to choose from when

configuring numerical simulations of weather events.

However, some schemes may be more appropriate for use

in certain atmospheric regimes than others (e.g., SECOLD

versus other regimes). The appropriateness of using par-

ticular schemes is dependent upon the vertical thermody-

namic structure and related instability, which is addressed

in further detail within a summary table for different PBL

parameterization schemes as provided by CCCB15.

CCCB15 summarize basic foundational work in the

development of PBL parameterization schemes by syn-

thesizing explanations provided by Stensrud (2007) and

Stull (1988). One-way PBLparameterization schemes are

distinguished by the depth through which known vari-

ables are permitted to affect a givenmodel point (‘‘local’’

or ‘‘nonlocal’’). For local closure schemes, only vertical

levels that are immediately adjacent to a given point

within themodel directly influence variables representing

this point, whereas this restriction is relaxed in nonlocal

closure schemes. Thus, nonlocal closure schemes are able

to represent the effects of deeper PBL circulations and

can improve model accuracy for regimes in which larger

eddies are a substantial source of vertical transport in the

lower atmosphere.

Stensrud (2007) highlights a major disadvantage of

employing strictly local closure, which effectively re-

flects stunted deepening of the PBL in the presence of

localized stable layers. Stable layers inhibit vertical

mixing within the PBL, which is facilitated by the largest

eddies encouraging deeper mixing of mass, heat, and

momentum. Nonlocal schemes are able to account for

the effects from these eddies. Some schemes have been

developed that incorporate concepts of both local and

nonlocal closure, which will be the focus of later dis-

cussion, with an emphasis on the Asymmetric Convec-

tive Model (ACM), whose design is illustrated by Pleim

(2007a,b).

CCCB15 provide an in-depth collection of typical

biases associated with PBL schemes used in the WRF

that have been explored throughout the broader litera-

ture. A tabular summary of these PBL schemes and

others, along with associated advantages and disadvan-

tages based on a variety of sources, is provided by

CCCB15. However, prior to CCCB15, meteorological

regimes for which previous studies have addressed the

evaluation of PBL schemes have not included a sole

focus on the southeast U.S. cold season severe weather

patterns. Vertical motion at larger spatial scales, shear-

driven eddies, as well as daytime surface heating can all

influence thermodynamic and kinematic structures in

the low levels of the atmosphere. King et al. (2017) es-

tablish the importance of warm-air advection in dis-

tinguishing low-CAPE environments supporting severe

events. CCCB15 highlight examples of observed and

model forecast soundings in SECOLD environments

that are neither well mixed nor strongly stable, yet such

PBLs need to be accurately portrayed by model simu-

lations using PBL parameterization schemes to resolve

the highly sensitive instability parameter space charac-

teristics of the regime.

The performance of PBL schemes may substantially

influence the ability of a numerical model to accurately

simulate the southeast U.S. cold season severe weather

environment (CCCB15). CCCB15 investigate two

SECOLD-regime severe weather events, which high-

light differences in the thermodynamic and kinematic

structures between this regime and those of a more

quiescently evolving PBL. They illustrate the SECOLD

tornado environment using an observed sounding to

show its characteristic low static stability in the low

levels with strong vertical wind shear. However, no

portion of the observed sounding exhibits well-mixed

layers characterized by uniform potential temperature

and/or wind velocity. As such, in a general sense, this

environment represents the thermodynamic and kine-

matic vertical profiles characteristic of neither well-

defined strong-mixing nor strong-stability regimes,

highlighting its complexity as an intermediate hybrid

regime for which research preceding CCCB15 has been

limited.

CCCB15 find that nonlocal mixing is necessary to

properly simulate the relatively steeper low-level lapse

rates within the warm sectors of an extratropical cyclone

favoring the severe weather for the two cases examined

therein, as local schemes yield lapse rates that are too

weak. The importance of properly simulating 0–3-km
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lapse rates is critical in these environments owing to

their ability to discriminate between significantly severe

and nonsevere thunderstorm environments (Sherburn

and Parker 2014). CCCB15 find nonlocal schemes to

depict weaker storm-relative helicity (SRH) compared

to local schemes in association with a somewhat

smoother vertical wind profile, but the SRH is still suf-

ficiently strong to suggest that the deeper mixing in-

herent to the nonlocal schemes does not produce too

smooth of a wind profile to preclude tornadoes. The

conclusions of CCCB15 provide the motivation for the

present study, to extend the analysis to a larger, more

diverse sample. As such, this work extends the in-

vestigation of PBL schemes in the SECOLD regime by

incorporating many additional cases in order to better

generalize results while better substantiating an un-

derstanding of the tendencies of the PBL schemes

through an investigation of multiple convective param-

eters. Furthermore, this study decomposes these ten-

dencies into diurnal and nocturnal components since

significant nocturnal tornadoes are not uncommon in

the southeast United States (e.g., Kis and Straka 2010),

especially when considering linear convective modes

(Trapp et al. 2005). Ultimately, this will allow for an

assessment of the performance of the PBL schemes,

which can provide a basis for determining which

schemes best depict the SECOLD regime and can also

provide an opportunity to improve upon the parame-

terization schemes for this regime.

Subsequent discussion and analysis focus on a

sampling of five PBL schemes: two local, two non-

local, and one hybrid local–nonlocal and four variants

of the hybrid. The two local schemes considered are

theMellor–Yamada–Janjić (MYJ; Janjić 1990, 1994) and

quasi-normal scale elimination (QNSE; Sukoriansky

et al. 2005) schemes, the two nonlocal schemes consid-

ered are the Medium-Range Forecast (MRF) model

(Hong and Pan 1996) and Yonsei University (YSU;

Hong et al. 2006) schemes, and the hybrid local–

nonlocal scheme for which variants are created herein

is version 2 of the Asymmetric Convective Model

(ACM2; Pleim 2007a). This set of five PBL schemes and

variants is intended to reflect the physical dispersion of

model simulations arising from the two principally dif-

ferent techniques of representing vertical mixing using

PBL parameterization schemes: local versus nonlocal

mixing.

Following a review of the distinguishing characteris-

tics of the SECOLD environment in section 2, the

present study broadens the scope of CCCB15 to a more

diverse dataset of 21 different severe weather events as

opposed to 2 in CCCB15. The experimental design and

many aspects of the evaluation process are identical

between the present work and CCCB15 in order to re-

tain consistency and so the details are only partially re-

iterated in section 3. The mathematical background for

testing the sensitivity of the ACM2 scheme is offered in

section 4. Statistical analyses representing the full

21-event SECOLD simulated dataset are provided in

section 5 for several thermodynamic and kinematic

variables. This includes investigation of diurnal versus

nocturnal statistical tendencies among the full dataset.

Section 6 provides a discussion of the differences in

simulated convective morphology owing to variations in

the PBL scheme.

2. Characteristics of the SECOLD environment

Severe thunderstorms (producing hail $ 1-in. di-

ameter; wind gusts $ 50kt, where 1kt 5 0.51ms21; or a

tornado) are responsible for a wide array of impacts to

society. The meteorological conditions that favor these

phenomena (e.g., Schaefer 1986) must simultaneously be

met in time and space, and include instability, moisture,

and lift. An additional condition of vertical wind shear is

required for organized severe thunderstorms to occur.

This work focuses on the specific environment of tornadic

thunderstorms that occur in the southeast United States

during the cold season (i.e., December–February), and is

specifically intended to highlight some of the dis-

tinguishing characteristics of the SECOLD environment.

The societal impact of such events is particularly sub-

stantial owing to socioeconomic characteristics of the

Southeast that inherentlymake this areamore vulnerable

to severe weather casualties (Ashley 2007).

Previous studies have investigated the characteristics

of the southeast U.S. tornado environment (e.g., Guyer

et al. 2006; Guyer and Dean 2010). Sherburn and Parker

(2014) consider high-shear, low-CAPE (HSLC) envi-

ronments in general (not limited to the southeast United

States in the cold season) and evaluate the performance

of a broad set of meteorological parameters in these

environments for the prediction of severe thunder-

storms. Also, southeast U.S. cold season severe weather

environments and European severe storm environments

tend to have similar characteristics (Brooks 2009).

For the purposes of building upon the previous work and

highlighting distinguishing characteristics of the SECOLD

environment—particularly relevant for motivating further

work related to better understanding the PBL of this envi-

ronment—this study subsequently provides a parameter-

based analysis of a subset of often-referencedmeteorological

variables for the southeast U.S. cold season tornado envi-

ronment. To accomplish this, we use the dataset presented

by Smith et al. (2012), Thompson et al. (2012), and Edwards

et al. (2012) (collectively referred to as STE12 hereafter).
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STE12 introduce, document, and apply the process of

merging severe storm reports with near-storm environ-

mental characteristics based on the Storm Prediction

Center (SPC) mesoanalysis data. Also, STE12 docu-

ment the assignment of environmental characteristics

and modes associated with certain severe weather–

producing convection across the United States, serving

as the foundation for this work. The resulting dataset is a

9-yr sample of tornado, significant hail (hail of at least

2 in. in diameter), and significant wind (wind gusts of at

least 65 kt) events based on the National Centers for

Environmental Information Storm Data publication

that is paired with SPC mesoanalysis data (Bothwell

et al. 2002) during the period from 2003 through 2011.

This involves the documentation of the highest-

magnitude report per hour and per report type on the

40-km grid-length Rapid Update Cycle (RUC) model

grid (Benjamin et al. 2004), permitting pairing of the

severe report database with the mesoanalysis data. This

process amounts to the collection of 22 901 total severe

thunderstorm grid-hour events, with 10 753 of them

corresponding to tornadoes, which are the subject of

subsequent focus.

The 10753 grid-hour tornado events are stratified into two

groups: 1) tornado events occurring within roughly the

southeast quarter of the United States and during the cold

season (December–February), referred to as SECOLD (503

events), and 2) tornado events occurring outside of the

SECOLD spatiotemporal environment, referred to as

NONSECOLD (10250 events). We define the southeast

United States to encompass the states of Arkansas, Loui-

siana, Tennessee, Mississippi, Alabama, Georgia, North

Carolina, South Carolina, and Florida. NONSECOLD in-

cludes events outsideof the southeastUnitedStates any time

of year and within the Southeast outside of the December–

February period. The motivation for the aforementioned

stratification process is to investigate the difference between

meteorological variables associated with SECOLD torna-

does and those associated with other tornadoes occurring

across the country and during warmer times of year.

Box-and-whisker plots for selected thermodynamic

and kinematic variables characterizing the SECOLD and

NONSECOLD environments are provided to illustrate

thee general differences between their corresponding

distributions. Displayed plots of the NONSECOLD en-

vironments represent a subset of the full distribution of

these environments, owing to the substantial disparity in

sample size between the smaller SECOLD and larger

NONSECOLD distributions. Specifically, random sam-

pling without replacement from the full NONSECOLD

distribution is performed for each variable, to create a

NONSECOLD sample whose size is equivalent to that of

SECOLD. This permits the comparisons between these

two distributions to be founded upon more similar

quantities of data. Although not shown, it was found that

the process of random sampling from the larger sample

resulted in little difference in the box-and-whisker plots

for all variables subsequently illustrated, precluding the

performance of this procedure more than once for any

given variable.

Box-and-whisker plots of surface-based (SB) con-

vective available potential energy (CAPE) (SBCAPE)

and mixed-layer CAPE (MLCAPE) (Fig. 1) show the

downward-shifted, compressed nature of CAPE for the

SECOLD environment in comparison to other envi-

ronments (NONSECOLD). This difference is influ-

enced by warmer and moister conditions (not shown;

based on potential temperature and mixing ratio) in the

lower atmosphere and steeper temperature lapse rates

in the middle atmosphere during the warm season that

can support greater CAPE for the NONSECOLD dis-

tribution. A consequence of this smaller range of CAPE

values is that small increments of CAPE in the SECOLD

environment (e.g., those related to forecast and/or ob-

servation error) are a larger fraction of the total CAPE

compared to that of other environments.

The differences in the portion of MLCAPE confined

to the lowest 3 km of the atmosphere between SECOLD

and NONSECOLD are smaller than the differences in

MLCAPE derived from the entire vertical profile (cf.

Figs. 1 and 2). This is associated with larger proportions

of MLCAPE confined to the lowest 3 km above ground

during SECOLD compared to NONSECOLD (Fig. 2)

and highlights the relative importance of lower-

atmospheric thermodynamic structures in explaining

the CAPE in the SECOLD environment (CCCB15).

Furthermore, there is substantial separation between

the SECOLD andNONSECOLDdistributions of 0–1-km

SRH and 0–1-km vertical bulk shear (Fig. 3). Given that

vertical thermodynamic and kinematic profiles, whose

characteristics are described by these parameters, are

directly influenced by turbulent exchanges in the PBL,

this provides substantial motivation for further explo-

ration of the PBL in more detail for the SECOLD

environment.

3. Methodology

a. Experimental design

The overall simulation design and model evaluation

technique follow those presented by CCCB15, with

equivalent comparisons in the extension to a much

larger sample for the present work. Model simulations

are run using version 3.3.1 of the WRF-ARW Model

(Skamarock et al. 2008). While this is an older version of

the WRF, and subsequent WRF versions could provide
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different results, the basic core structure of the WRF

and the behavioral characteristics and differences

among the parameterization schemes are expected to be

replicated owing to consistencies inherent in the design

of this model and its associated schemes. Updates to

FIG. 1. Box-and-whisker plots corresponding to the distribution

of (a) SBCAPE and (b) MLCAPE for tornadoes occurring in the

SECOLD andNONSECOLD environments from left to right in each

panel with sample sizes listed below the x-axis labels. The blue

outlined box corresponds to the IQR, the red horizontal line cor-

responds to the median value, the dot marker corresponds to the

mean value, and whiskers extend up to 1.5 times the IQR beyond

the first and third quartiles. Outlier values are not included to

ensure primary focus on the details of the bulk of the distributions.

Distributions corresponding to NONSECOLD environments rep-

resenta subsetof the fullNONSECOLDsample following theprocedure

of sampling without replacement as described within the discussion.

FIG. 2. As in Fig. 1, but for (a) 0–3-kmMLCAPE and (b) ratio of

0–3-km MLCAPE to total MLCAPE. Note that the ratio of

MLCAPE values corresponds to a dimensionless quantity, as re-

flected by the y-axis label of [].
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WRF occur too frequently for statistical postprocessing

in the present study to be complete before subsequent,

newer versions of the WRF are available. Ultimately,

substantial time has passed between the release of

WRF-ARW version 3.3.1, and it would be ideal to use a

more recently updated version of the WRF; however,

the purpose of the present work is to ascertain a general

understanding of the behaviors of the different PBL

schemes that can be employed within the WRF frame-

work, and this is accomplished in an established version

of the WRF.

The present study uses horizontal grid spacing of 4 km

and 50 vertical levels. Grid-point dimensions are 580

grid points in the west–east direction with 350 grid

points in the north–south direction. Vertical grid spacing

stretches with height above the ground, with around

20-m spacing between levels near the ground stretching to

500-m spacing between levels near the troposphere, with

around 8–12 levels typically in an afternoon, relatively

well-mixed boundary layer. The domain covers the

southeastern United States and vicinity including por-

tions of the Gulf of Mexico, which is illustrated in Fig. 4.

CCCB15 specify other characteristics of these WRF

simulations, including consistent pairing of the PBL

schemes to land surface schemes, initial and boundary

conditions using the National Centers for Environ-

mental Prediction Final (FNL) Operational Global

Analysis (NOAA/NCEP 2000), the single-moment

6-class microphysics scheme (Hong and Lim 2006), the

Rapid Radiative Transfer Model relevant for general

circulation models (RRTMG; Iacono et al. 2008) long-

wave and shortwave radiation schemes, the Noah land

surface model (Ek et al. 2003), a model time step of 12 s,

and a radiation time step of 30min. It is acknowledged

that this radiation time step is relatively long, which

could influence the simulated PBL development.

However, given the large quantity of cases simulated

for the present study, this radiation time step was

chosen to carry out the numerical simulations in a

timely manner while also supporting depictions of PBL

growth sufficiently consistent with that of the real

atmosphere.

Nineteen events are simulated, each involving separate

24-h periods starting at 1200 UTC during which severe

weather, including tornadoes, occurred over the southeast

United States. In addition to the two cases from CCCB15,

this results in a total of 21 separate severe weather events,

providing a much larger sample size in the resulting model

analyses and across many SECOLD regime episodes.

These events were chosen based on a subjective assessment

of their production of high-density severe weather reports

and the issuance of supporting watches and warnings from

the National Weather Service. Figures 5–7 illustrate the

superposition of storm reports from these 21 events, along

with markers of the four locations considered for forecast

sounding evaluation in each event. The decision to select

four locations is somewhat arbitrary, but is intended to

provide a sample of some spatial diversity of the environ-

ment for each event, and is consistent with the analysis

procedure carried out by CCCB15. The four particular

FIG. 3. As in Fig. 1, but for (a) 0–1-km SRH and (b) 0–1-km

bulk shear.
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locations for each event are based on their proximity to

severe thunderstorm reports, particularly tornadoes.

b. Evaluation process

As in CCCB15, this study merges model analysis

output from the Rapid Update Cycle (RUC; Benjamin

et al. 2004) with objective analyses of surface observa-

tions to create a consistent observationally influenced

dataset to compare with the model simulations. This is

done similarly to the process invoked for the generation

of SPC mesoanalysis data (Bothwell et al. 2002), such

that the surface-observation-influenced data lie at the

base of the vertical profiles. Specifically, vertical pro-

files of relative humidity, temperature, and wind are

extracted from RUC output available from the NOAA

National Model Archive and Distribution System

(NOAA/NCDC 2014a,b) with 20-km horizontal grid

spacing at 25-hPa intervals in the vertical each hour; this

is repeated for each hour of each 24-h-long simulation.

Such routines are performed for pressure levels above

that corresponding to the surface based on the surface

objective analysis (SFCOA) output (Bothwell et al.

2002). Then, corresponding surface variables each hour

originating from the SFCOA output serve as the base

of each profile. The corresponding dataset will sub-

sequently be referred to as the RUC/SFCOA dataset.

RUC/SFCOA soundings are generated for each of the

locations and during the events illustrated in Figs. 5–7, in

order to provide thermodynamic and kinematic profiles

reflecting the influences of observations for comparing

against the WRF Model simulations.

To identify environments that are representative of

the warm-sector air that is relevant for supporting

convection with at least some streamwise vorticity,

sounding-based parameter thresholds are set for com-

parisons between forecast soundings and RUC/SFCOA

soundings. Thresholds of 25 J kg21 and 25m2 s22 of most

unstable CAPE and 0–3-km SRH are used, respectively

(i.e., representing the overlap of at least very limited

buoyancy and SRH minimally supporting convection

with streamwise vorticity), for a sounding to be consid-

ered for comparison. These thresholds slightly differ

from the more general, positively buoyant and con-

vectively uncontaminated characteristics that were

presented by CCCB15. This is to further reinforce con-

sistent, reproducible constraints for which sounding

comparisons are made that incorporate thermodynamic

and kinematic characteristics of warm sector air mini-

mally supporting convection with streamwise vorticity

for a much larger sample size. Also, to permit model

spinup, all initial-hour soundings (1200 UTC) are

omitted from the analysis to account for model simula-

tions to adjust from initial conditions. At a given hour,

both forecast and RUC/SFCOA soundings must meet

these requirements to be considered for comparison.

For each case and for each PBL parameterization

scheme, all valid forecast soundings and corresponding

RUC/SFCOA soundings and related parameters are

compiled for statistical analysis, which we present in

section 5.

In terms of describing the real atmosphere, the use of

the RUC/SFCOA dataset is limited by bias inherent in

the RUC model and by errors in the surface objective

analyses. Furthermore, the usage of the local scheme

from Burk and Thompson (1989) for parameterizing the

PBL in the RUC could also potentially bias subsequent

FIG. 4. The domain used for WRF simulations. The horizontal grid spacing is 4 km for the

simulations.
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results, perhaps in favor of local PBL schemes. RUC/

SFCOA is not intended to be treated as a purely ob-

servational dataset, though it is observationally influ-

enced. The surface objective analysis fields are found to

be accurate in severe weather regimes affecting the

central United States (Coniglio 2012), and some attempt

has beenmade to evaluate the accuracy of this dataset in

the SECOLD regime in section 5. However, despite

potential inadequacies, the scarcity of observational

data that fully resolve the atmosphere, and irregular

spatial sampling of surface observations, prevent a more

accurate dataset from being available. Regardless, the

operational meteorology community treats the SFCOA

system as the standard for real-time, mesoscale analysis,

providing backing for its use as a comparison dataset in

the present study. While the FNL output, and not the

RUC output, was used to initialize the WRF simula-

tions, we believe that this is acceptable as it reflects the

various choices of initialization (including non-RUC)

options in real-time simulations for which comparisons

to the observationally influenced mesoanalysis program

can be made. The dispersive sample of forecast sound-

ings evaluated for each PBL scheme across 21 simulated

SECOLD severe weather events lends confidence in

the building of robust statistical analyses based upon

comparisons to the observationally influenced RUC/

SFCOA dataset, which, for many, is the modern-era

meteorologist’s source of real-time mesoanalysis data.

4. Testing the sensitivity of the ACM2 scheme

The notion that the SECOLD regime exhibits in-

termediate boundary layer mixing (neither highly stati-

cally stable nor statically unstable but still yielding

CAPE) lends interest in investigating the performance

of the ACM2 scheme that combines aspects of both

nonlocal and local mixing processes. The nonlocal

mixing component and related depictions of a deeper

FIG. 5. Severe thunderstorm reports (tornadoes in red, wind in blue, and hail in green) for 9 of the 21 studied events using Storm

Prediction Center (2015) overlaid with gray-shaded star markers denoting the four locations used for forecast sounding evaluation for this

event. Each event period corresponds to severe thunderstorm reports occurring from 1200UTC on the listed date in the bottom-left-hand

corner of each map until 1200 UTC on the subsequent date. Events are provided in chronological order from left to right and then

downward in each row of maps.
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PBLwould represent the effects of vertical-shear-induced

mixing in these environments, whereas the local mixing

component may effectively represent the relatively

weaker buoyancy-induced mixing in intermediate

thermodynamic stability environments. The simulta-

neous incorporation of 1) enhanced vertical mixing

characteristic of strictly nonlocal schemes and 2) sup-

pressed vertical mixing characteristic of strictly local

schemes is hypothesized to optimize the performance

of the hybrid ACM2 scheme in the SECOLD regime,

which also reflects the simultaneous incorporation of

enhanced and suppressed mixing (related to strong ver-

tical shear and weak instability, respectively).

The PBL depth simulated by the ACM2 (nonlocal–

local) scheme h depends on the critical Richardson

number Ricrit. Specifically, h is determined to be the

level at which the bulk Richardson number charac-

teristic of the environmental thermodynamic and ki-

nematic profile defined in Pleim (2007a) Rib, becomes

equal to Ricrit in the entrainment zone. The following

is the equation that Pleim (2007a) used for calculating

the Richardson number within the entrainment layer

FIG. 7. As in Fig. 5, but for an additional six cases.

FIG. 6. As in Fig. 5, but for an additional six cases.
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that surmounts the mixed layer whose top is defined

by zmix corresponding to the top of the convectively

unstable layer:

Ri
b
5

g[u
y
(h)2 u

s
](h2 z

mix
)

u
y
[U(h)2U(z

mix
)]2

, (1)

where h represents the height above ground of the top

of the PBL, uy is the mean virtual potential tempera-

ture from the lowest model level to the top of the PBL,

us is the virtual potential temperature augmented to

account for convective thermals in the lower boundary

layer (Holtslag et al. 1990), and the squared difference

between U(h) and U(zmix) represents the bulk shear

within the entrainment zone beneath the PBL height.

In addition, g is the vertical acceleration owing to

gravity.

The ratio of static stability [vertical virtual potential

temperature difference in the numerator of Eq. (1)] to

the vertical wind shear [vertical difference in wind speed

in the denominator of Eq. (1)] is represented by Rib. In

general, a larger Richardson number corresponds to

greater suppression of turbulence. In turn, the PBL

depth then provides definition for the portion of the

atmosphere that is influenced by turbulent mixing in

these model simulations. Note that the difference be-

tween h and zmix physically represents the layer boun-

ded by the top of the mixed layer and the top the

diagnostically defined PBL (Pleim 2007a).

Theoretical vertical profiles of virtual potential tem-

perature uy and wind components are used to craft

Richardson number profiles to better understand im-

plications of the ACM2 sensitivity tests. The default

ACM2 (nonlocal–local) scheme uses 0.25 for Ricrit, and

four variants to the ACM2 (nonlocal–local) scheme

defined by changes to Ricrit are introduced: 0.05 corre-

sponding to ACM05, 0.15 to ACM15, 0.35 to ACM35,

and 0.45 to ACM45, with each variant representing the

nonlocal–local hybrid configuration. These four values

of Ricrit lie within the bounds of the critical Richardson

numbers used for the YSU andMRF schemes, 0 and 0.5,

respectively, which largely represent a characteristic

range of nonlocal-scheme critical-Richardson-number

selections in the PBL-scheme literature (e.g., Hong

et al. 2006).

To further justify this range of Ricrit, consider a well-

mixed boundary layer where duy/dz 5 0 from the

surface to 350m beneath exponentially varying uy
(Fig. 8a) and two profiles of linearly increasing hori-

zontal wind speed in a unidirectional wind profile

(Fig. 8b). Two Richardson number profiles in the en-

trainment zone (between zmix and h) are determined

from these profiles, each corresponding to a different

strength of vertical shear for the given profile of uy
(Fig. 8c). The shape of the uy profile bears similarity to

those of Stensrud (2007) and Stull (1988), where it is

assumed for the sake of simplicity that uy within the

mixed layer is equal to us. In Eq. (1), uy is computed as

the average uy for the entire atmosphere beneath h.

This simple model allows us to understand the re-

lationship between vertical wind shear and Ricrit
within the entrainment zone above the mixed layer.

The equations used to create the profiles shown in

Fig. 8 are specified as follows:

u
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(
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mix
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U(h)5nh1U
s
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where n5 0.0441 for the stronger-shear case, n5 0.0294

for the weaker-shear case, and Us is the surface wind

speed set to zero. Substitution of Eqs. (2)–(4) into

Eq. (1) gives
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[n(h2 z
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The important conclusions from Fig. 8c are that 1) Ricrit
for both cases of chosen vertical shear corresponds to

values roughly between 0.05 and 0.45 in the lowest

portion of the entrainment zone (near and slightly

above 350m) that immediately surmounts the mixed

layer for the two conceptualized shear magnitudes;

2) holding the Richardson number constant (as would

be done for the selection of a criticalRichardson number)

for a strengthening vertical-shear magnitude corre-

sponds to a deeper simulated PBL, effectively repre-

senting the effects of vertical-shear-driven eddies in

enhancing PBL depth; and 3) increasing Ricrit for a

given shear profile can substantially increase the

mixing depth.
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5. Statistical analysis

Model soundings are compared to RUC/SFCOA

soundings at sounding locations, providing an oppor-

tunity for model evaluation based on particular RUC/

SFCOA parameter-magnitude groupings that are

treated as ‘‘observations’’ or ‘‘actual’’ values, though

it is acknowledged that they contain model-related

biases as stated above. This addresses the following

question: ‘‘How well do PBL schemes reproduce an-

alyzed SECOLD thermodynamic and kinematic re-

gimes?’’ This question is answered using three

procedures of statistical analysis, as subsequently

described.

First, Theil’s inequality coefficient U (e.g., Theil 1961,

1966; Clements and Frenkel 1980; Pindyck and Rubinfeld

1981; Trnka et al. 2006), described by CCCB15, is used to

assess model performance among the nine PBL parame-

terizations. The definition of U is as follows:

U5
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1
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t51
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T
�
T

t51

(Ys
t )

2

s
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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T

t51

(Ya
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2
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where Ys
t represents forecasts and Ya

t represents obser-

vations. In addition, U represents normalization of the

root-mean-square error, allowing for parameters whose

magnitudes vary relatively widely among one another to

be compared in a standardized manner (CCCB15). The

FIG. 8. (a) The vertical profile of virtual potential temperature

used for conceptualizing a theoretical Richardson number profile

for varying vertical shear magnitudes. In this case, the mixed layer

extends from the ground to 350m above ground, above which an

 
exponential function describes the vertical variability of virtual

potential temperature with height to 700m. The height of the top of

the mixed layer is denoted by zmix. (b) Plotted are vertical profiles

of wind speed for a theoretical unidirectional wind profile for two

magnitudes of vertical shear: weaker (blue) and stronger (pink).

The weaker-shear case corresponds to a gain of 10.3m s21 of wind

speed with increasing height above the ground from the surface

to the top of the mixed layer, and the stronger-shear case corre-

sponds to a gain of 15.4m s21 in that same layer. (c) Plotted are

vertical profiles (in terms of PBL depth h as height above ground)

of Richardson number (plotted within a layer above the top of

the mixed layer zmix) that correspond to the vertical profile of

virtual potential temperature displayed in (a) and the vertical

profile of wind speed displayed in (b). These Richardson number

profiles vary based on the strength of the vertical shear depicted

in (b) and follow the relationship mathematically represented by

Eq. (1): Rib 5 {g[u(h) 2 us](h 2 zmix)}/uy[U(h) 2 U(zmix)]
2. Thick

vertical lines indicate the different critical Richardson numbers

evaluated using the ACM2 scheme as the simulated framework

(ACM variation in parentheses in the following): 0.05 (ACM05),

0.15 (ACM15), 0.25 (ACM2), 0.35 (ACM35), and 0.45 (ACM45).
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range of U values is 0 (perfect forecast) to 1 (worst

possible forecast). CCCB15 also refer to the bias com-

ponent of error Um, which measures the degree of sys-

tematic model error by comparing the simulation mean

over the 21 cases to the mean from the RUC/SFCOA

dataset. The definition of Um is as follows:

U
m
5

(Ys 2Ya)2

1

T
�
T

t51

(Ys
t 2Ya

t )
2

, (7)

where Ys
t represents forecasts and Ya

t represents obser-

vations. The quantity Um measures the degree of sys-

tematic error inherent in the simulation results by

comparing the overall simulation mean to the overall

actual mean. The range of Um values is 0 (no bias) to 1

(large bias). Pindyck and Rubinfeld (1981) suggest that

Um values over 0.1 denote appreciable systematic bias,

necessitating adjustments to the model for its improve-

ment. By comparing U and Um across different PBL

schemes, one can determine the relative degree of

forecast error for each PBL scheme and evaluate how

much of that is systematic. The reader is referred to

CCCB15 for more details on U and Um.

To supplement the abovemetrics, interquartile ranges

(IQRs), median values, andmean parameter values over

RUC/SFCOA distributions are compared with those

statistics corresponding to each of the PBL schemes.

These statistics therefore combine information corre-

sponding to four sounding sites for each of the 21 cases.

This permits the analysis of overall differences between

simulation results using the different PBL schemes

and RUC/SFCOA. This analysis is related to the com-

putation of the Um statistic in that it provides a sense

of overall bias, and this analysis also provides the sign

of the overall bias. Furthermore, these comparisons

are decomposed into diurnal and nocturnal compo-

nents, such that distributions are created for separate

1300–0000 UTC and 0100–1200 UTC time periods, re-

spectively. These results are presented in both inte-

grated and bulk form to highlight some of the more

apparent, overarching differences between the PBL

schemes and the RUC/SFCOA dataset. While these

differences are not investigated in detail (e.g., decom-

position of individual variables into various components

and analysis thereof), the purpose of the present work is

to highlight the behavioral tendencies of PBL schemes

relevant to evaluating their performance in the SECOLD

regime for basic meteorological variables. This is in-

tended to satisfy the operational meteorologist’s interest

in identifying aspects of model biases, and the theoreti-

cian’s interest in identifying the relationships between

the design of PBL schemes and their performance and

motivating future research to investigate more intricate

details of physical processes and interactions that are

ongoing in these simulations (e.g., surface fluxes).

The Kolmogorov–Smirnov (K–S) test (Massey 1951)

is used to statistically test the differences between the

different PBL schemes and RUC/SFCOA. The K–S test

compares the differences between the cumulative den-

sity functions corresponding to two samples, and here

compares the parameter distributions provided by dif-

ferent PBL schemes to those from RUC/SFCOA.

Larger differences in the cumulative density function

with increasing parameter values correspond to the

greater likelihood that the two samples are from dif-

ferent populations (lower p values). The K–S test is

nonparametric, which is a strength of this statistical ap-

proach owing to its lack of a distribution assumption.

However, results from this test can be sensitive to both

large sample sizes and differences between cumulative

density functions that may only occupy relatively small

portions of the full ranges of the distribution values.

Values of p below 0.05 (statistically significant) are dis-

tinguished from those between 0.05 and 0.10 (marginally

statistically significant) and those above 0.10 (not sta-

tistically significant).

This section concludes with an analysis of the val-

idity of the RUC/SFCOA dataset based on a compar-

ison to observed soundings. This is accomplished by the

consideration of multiple variables, as subsequently

discussed.

a. 0–3-km lapse rate

Theil’s inequality coefficient U for 0–3-km lapse rate

is relatively similar among all PBL schemes, although

slightly lower for ACM2 (nonlocal–local) and its vari-

ants, along with the YSU (nonlocal) scheme, which also

minimizes the bias component Um (Fig. 9). Local

schemes (MYJ and QNSE) exhibit the largest bias

component Um.

For both diurnal and nocturnal distributions, local

schemes (MYJ and QNSE) consistently produce statis-

tically significantly smaller low-level lapse rates com-

pared to nonlocally influenced schemes (ACM2 and its

variants, along with the MRF and YSU schemes)

(Fig. 10). This underforecast by the local schemes is

accentuated at night, when the background statically

stable conditions are encouraged by nocturnal cooling of

the surface layer. Nonlocally influenced schemes do not

demonstrate substantial low biases between both di-

urnal and nocturnal periods, when comparing mean

values and IQRs for simulations and RUC/SFCOA

distributions (Figs. 9 and 10), though theMRF and YSU

schemes provide high biases at night. In fact, IQRs and
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mean values for simulations come close to matching

those for the RUC/SFCOA in several instances for the

nonlocally influenced schemes. This suggests the ne-

cessity of incorporating nonlocal PBL scheme design

to avoid systematic underestimations of low-level

lapse rates.

b. Mean lowest-100-mb mixing ratio

The lowest-100-mb mean mixing ratio (Fig. 11; 1mb

5 1 hPa) is relatively well forecast by all PBL schemes

in comparison to the 0–3-km lapse rate (Fig. 9), though

the ACM2 scheme and its variants do indicate statis-

tically significantly more moist conditions during the

diurnal period (Fig. 12). Except for the MRF scheme,

Um values are below 0.1, consistent with the generally

limited bias component for the simulations (Fig. 11).

There is a relatively small overforecast for all schemes

except local ones (Fig. 12), which is most apparent for

the MRF scheme, based on comparisons of mean

values and IQRs for simulation distributions to RUC/

SFCOA distributions.

c. Planetary boundary layer depth

PBL depth is a measure of how deep the vertical

turbulent mixing is simulated using the different PBL

parameterizations. To apply a consistent method of

determining PBL depths across the different PBL pa-

rameterizations and the RUC/SFCOA soundings, the

methodology of Coniglio et al. (2013) is used in assessing

PBL depth, which is based on methods created by de-

velopers of the RUC to derive a PBL-top variable. The

PBL top is the first level above where the virtual

FIG. 9. Scatterplot of Theil’s inequality coefficient U vs bias component of error Um for

0–3-km lapse rate. Each marker corresponds to each PBL parameterization scheme, with

markers color coded based on PBL scheme type and identified in the legend in the bottom-

right part of the figure. Vertical and horizontal axes are scaled equivalently for this and all

subsequent scatterplots of U vs Um to permit relative comparisons of error and its bias

component (i.e., U and Um values closer to 0 indicating less error and a lesser bias com-

ponent, respectively). Blue colors correspond to nonlocal schemes, orange/red colors

correspond to local schemes, and purple/gray colors correspond to hybrid nonlocal–local

schemes.
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FIG. 10. IQR (color coded), median value (black horizontal line), and average value (black star) for each PBL scheme for the 0–3-km

lapse rate. Color coding for PBL schemes is as in Fig. 9. Simulation results (green) representing the RUC/SFCOA (R/S) soundings depict

the IQR,median value (black horizontal line), and average value (black star). The p value corresponding to theK–S test between the PBL

scheme distribution and the R/S distribution is listed below the PBL scheme label (rounded and expressed to as many as five decimal

places, including the use of exponential notation for p values with zeros in at least the first four decimal places), below which the

distribution sample size is provided. The p values, 0.05 (statistically significant) are indicated by a magenta up arrow, p values between

0.05 and 0.10 (marginally statistically significant) are indicated by a dark-yellow up arrow, while no arrow is provided for p values. 0.10.

(a) Statistics for the diurnal subset of the 0–3-km lapse rate dataset from 1300 UTC through 0000 UTC; and (b) as in (a), but for the

nocturnal subset from 0100 through 1200 UTC.
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potential temperature exceeds the maximum virtual

potential temperature in the lowest three levels by more

than 0.6K.

There is a large bias component (underforecast) in

PBL depth (Fig. 13) for the local PBL schemes, with this

bias component being characterized by an underforecast

(Fig. 14), with relatively greater error for the MYJ (lo-

cal) and QNSE (local) schemes, similar to 0–3-km lapse

rate (Fig. 9). Minimization of both error and its bias

component come from using the ACM2 (nonlocal–

local) scheme and its variants, along with the YSU

(nonlocal) scheme, with all of these schemes repre-

senting nonlocally influenced mixing.

During the day, the simulated PBL depth is under-

forecast based upon simulated mean and 50th- and 75th-

percentile values, using the local MYJ and QNSE

schemes (Fig. 14). Nonlocal schemes do not provide

similar underforecasts. The ACM2 and its variants

simulate deeper PBLs compared to RUC/SFCOA out-

put based upon mean values and IQRs, though this

overforecast is relatively lessened when using the

ACM05 scheme (similar to 0–3-km lapse rates being

better forecast by the ACM05). These findings are

consistent with much of the previous literature re-

garding the depiction of deeper mixing using nonlocal

PBL parameterization schemes (e.g., CCCB2015;

Coniglio et al. 2013; Stensrud 2007). In the case of the

SECOLD regime, it is clear that local schemes pro-

vide unrealistically shallow PBLs. Furthermore, rel-

atively larger simulated PBL depths are associated

with relatively larger Ricrit for the variants of the

ACM2 (nonlocal–local) scheme, particularly during

diurnal periods (Fig. 14), though a one-to-one re-

lationship between PBL depth and exact Ricrit values

is not evident.

The notion that the ACM2 (nonlocal–local) variants

associated with higher critical Richardson numbers yield

the deepest PBLs is consistent with the earlier hypoth-

esis that these higher thresholds would be achieved at a

higher level above the ground. This would particularly

be the case in an environment characterized by strong

vertical shear. In the more strongly sheared environ-

ment, the environmental Richardson number is rela-

tively lower, representing enhanced turbulence, and

FIG. 11. As in Fig. 9, but for the mean mixing ratio in the lowest 100mb. Note that the x- and

y-axis ranges differ from those in Fig. 9.
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simulated strong vertical mixing must extend through a

deeper layer of the troposphere to reach a particular

Ricrit value. Accordingly, the increasing vertical wind

shear is physically associated with strengthened verti-

cal mixing and a deeper PBL related to the mechanical

production of turbulence. At the same time, increasing

the Ricrit value directly accounts for further amplifica-

tion of the simulated PBL depth in the strongly

sheared, SECOLD environment, such that the degree

to which mechanical-turbulence-enhanced vertical

FIG. 12. As in Fig. 10, but for mean mixing ratio in the lowest 100mb.
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mixing amplifies the PBL depth is best suited for rela-

tively higher Ricrit values to produce smaller U values.

To what degree this PBL-depth amplification should

be represented in the SECOLD regime in numerical

simulations was previously unknown, and this Ricrit
experiment validates the relationship between such

variability and simulated PBL depth in the SECOLD

regime.

At night, most schemes offer too-shallow PBL depths

based on comparisons to RUC/SFCOA output. How-

ever, the localMYJ andQNSE schemes produce slightly

shallower PBLs compared to the other schemes that

include nonlocal influences. One exception is the non-

local YSU scheme, which simulates an average and

IQR for PBL depth greater than that for RUC/SFCOA.

Of note, the aforementioned nocturnal PBL depth

calculations likely reflect the depth of the nocturnal

boundary layer (NBL; e.g., Güldner and Spänkuch 2001),

which can be distinguished from a deeper PBL. This

difference and its variability among simulations using

different PBL parameterization schemes could be foci

for future research. Future research could also identify

relationships between lapse rate profiles and properties

of the boundary layer at night, perhaps through an in-

vestigation of the components of the lapse rates (i.e.,

temperatures at specific levels in the vertical profile used

to derive the lapse rates).

d. Mixed-layer convective available potential energy

Theil’s inequality coefficient suggests that MLCAPE

is poorly forecast using all PBL parameterization

schemes, when compared to RUC/SFCOA soundings

(Fig. 15). There is a consistent signal for all PBL schemes

to statistically significantly overforecast MLCAPE rela-

tive to the RUC/SFCOA dataset during both diurnal and

nocturnal periods (Fig. 16). This motivates the need to

analyze the potential systematic biases for integrated

buoyancy in the RUC/SFCOA dataset. The use of 0–3-km

lapse rates does demonstrate utility in assessing the po-

tential for significantly severe storms (Sherburn and Parker

2014) and could be used as another indicator of the ther-

modynamic environment to assess background instability.

There does appear to be a slight decrease in simulated

MLCAPE and decrease in positive bias with increasing

FIG. 13. As in Fig. 9, but for PBL depth. Note that the x- and y-axis ranges differ from those

in Fig. 9.
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Ricrit among the ACM2 (nonlocal/local) scheme and

its variants. However, given the integrated nature of

MLCAPE and its incorporation of not only the tem-

perature, but also moisture, distributions, it would be

highly speculative to relate Ricrit variability withMLCAPE

variability. Ultimately, this encourages further research

to investigate the sensitivity of the SECOLD environ-

ment to simulated integrated buoyancy, as well as esti-

mates of CAPE from RUC/SFCOA versus observational

data sources.

FIG. 14. As in Fig. 10, but for PBL depth.
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e. 0–3-km storm-relative helicity

Theil’s inequality coefficient for 0–3-km SRH (Fig. 17)

reveals relatively similar error for all PBL schemes for

0–3-km SRH, though the results are slightly lower for the

MYJ (local) and QNSE (local) schemes and the ACM2

(nonlocal–local) schemes and its variants. The ACM2

(nonlocal–local) scheme and its variants represent an

intermediate zone for the bias component of error, lying

between the nonlocal schemes with a greater bias com-

ponent and the local schemes with a lesser bias compo-

nent. Simulation bias for 0–3-km SRH is lowest using the

MYJ (local) andQNSE (local) schemes and is highest for

the nonlocally influenced schemes (Fig. 17). Further-

more, the YSU and MRF nonlocal schemes exhibit the

lowest SRH (statistically significantly lower than RUC/

SFCOA distributions), based on average values and

IQRs (Fig. 18) especially during the nocturnal period.

This is consistent with nonlocal schemes depicting deeper

PBLs, which contain greater vertical mixing of momen-

tum and lower SRH compared to strictly local schemes.

The local (MYJ and QNSE) schemes indicate generally

higher SRH, though with a trend toward under-

forecasting at night.

Comparing Fig. 17 with Fig. 9 and Fig. 13, it is evident

that local schemes offer the greatest bias component for

0–3-km lapse rate and PBL depth, whereas nonlocal

schemes offer the greatest bias component for 0–3-km

SRH. Meanwhile, the ACM2 (nonlocal–local) and its

variants lower the bias component for all of these pa-

rameters from the most extreme bias-component mag-

nitudes for a given parameter (cf. Fig. 17 with Fig. 9 and

Fig. 13).

f. Comparisons of RUC/SFCOA soundings to
observed soundings

Throughout the aforementioned discussion, theRUC/

SFCOA dataset is treated as the observationally influ-

enced dataset for generating consistent comparisons to

observations. As previously mentioned, the SFCOA

system is considered to be the standard for real-time,

mesoscale analysis, substantiating its use as a compari-

son dataset in the present study. In this section, a cur-

sory attempt at identifying biases in the RUC/SFCOA

FIG. 15. As in Fig. 9, but forMLCAPE. Note the x- and y-axis ranges differ from those in Fig. 9.
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dataset is performed, through comparisons of the RUC/

SFCOA to observed soundings.

Among the events and locations illustrated in Figs. 5–7,

RUC/SFCOA grid points that were also the nearest grid

points to observed sounding locations serve as the basis

for subsequent analysis. These locations include Jackson,

Mississippi; Birmingham, Alabama; Peachtree City,

Georgia; and Lake Charles, Louisiana. A total of 13

selected RUC/SFCOA grid points were also in closest

proximity to observed sounding locations for analysis,

with up to three observed–simulated sounding compari-

sons permitted: 1200 UTC followed by 0000 UTC and

FIG. 16. As in Fig. 10, but for MLCAPE.
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then 1200 UTC spanning 24-h analyses. This yields a

total of 38 RUC/SFCOA soundings compared against

observed soundings (1 potential sounding comparison

is not permitted because of a lack of archived data,

precluding 39 comparisons), from which moisture,

lapse rate, buoyancy, and storm-relative helicity are

calculated.

Differences between RUC/SFCOA and observed

soundings are computed for several parameters as il-

lustrated in Fig. 19: CAPE and convective inhibition

(CIN) corresponding to the most unstable parcel

(MUCAPE and MUCIN) in Fig. 19a, lowest-100-mb

mean mixing ratio (MIXR), precipitable water (PW) in

Fig. 19b, lapse rates (LR) in the 0–3-km and 700–500-mb

layers (0–3-km LR and 700–500-mb LR) in Fig. 19c, and

SRH in the 0–1-km and 0–3-km layers in Fig. 19d.

Figure 19 highlights biases in the RUC/SFCOA dataset.

An apparent low-buoyancy and dry bias are evident in

the RUC/SFCOA dataset. This is especially apparent in

the analysis of MUCAPE and PW. In fact, the lower

bounds of the interquartile range for RUC/SFCOA–

observation differences forMUCAPE and PW aremore

negative than 2100 J kg21, and 0.8 in., respectively.

RUC/SFCOA–observation differences for lapse rate

and SRH are relatively more centered around zero.

While this represents only a cursory investigation of

RUC/SFCOA soundings in representing the true at-

mosphere, it does highlight some potential biases evi-

dent in this dataset, which could be the focus of future

research. Nevertheless, given the spatiotemporal regu-

larity of SFCOA, an understanding of PBL scheme

performance relative to the RUC/SFCOA dataset is

critical to a consistent interpretation of model output for

operational meteorology. It is noteworthy that there are

some cases of RUC/SFCOA biases (based on observed

soundings) illustrated in Fig. 19 that overwhelm the

simulation–RUC/SFCOA differences (Figs. 10, 12, 14,

16, and 18). This does cast some degree of doubt on the

precise magnitudes of simulation bias implied by these

figures. However, these figures do highlight general

behavioral tendencies of the differences between simu-

lated quantities and RUC/SFCOA estimates of the real

atmosphere, to be considered in relative terms.

The preceding analysis of differences between RUC/

SFCOA soundings and observed soundings in the

SECOLD environment could serve as the foundation

FIG. 17. As in Fig. 9, but for 0–3-km SRH. Note that the x- and y-axis ranges differ from those

in Fig. 9.
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for subsequent investigation of other input components

to this study, such as an analysis in the errors in initial

and boundary conditions. However, it is anticipated that

substantial additional research would need to be per-

formed to fully evaluate the validity of inputs and

assumptions used in the WRF simulations. This is the

case given the overwhelmingly large sample size of

soundings considered in this study among multiple cases

and many locations, given long-duration (24 h) forecast

cycles influenced by many other factors aside from

FIG. 18. As in Fig. 10, but for 0–3-km SRH.
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initial and boundary conditions such as the PBL and

other parameterization schemes. The analysis of RUC/

SFCOA biases provided herein offers an attempt to

investigate assumptions inherent to critical inputs.

6. Convective morphology sensitivity

CCCB15 provide a cursory overview of the sensitivity

of simulated convectivemorphology to the selected PBL

scheme; differences in the environmental conditions

influenced by the choice of the PBL ultimately yield

differences in the morphological characteristics of the

depicted convective processes. These differences can be

manifested in the operational forecaster’s assessment of

the severe weather risk and are an important consider-

ation of the validity of a model solution. A complete

evaluation and comparison of convective attributes

simulated using the nine PBL schemes addressed in this

manuscript are outside its scope. However, a cursory

investigation of differences among simulated convective

processes is performed.

Plan-view depictions of simulated composite reflec-

tivity produced for all nine PBL schemes for each of the

21 cases were reviewed to subjectively identify differ-

ences in the timing, location, mode, and intensity of

convection, between separate schemes and between

these schemes and observed composite radar reflectiv-

ity. Many of the differences are seemingly subtle, and a

much more extensive study would be required to accu-

rately and precisely identify simulation differences.

However, one modest signal is present for the ACM2

scheme and its variants to more consistently produce

FIG. 19. Differences (diff.) between parameters calculated fromR/S and observed soundings (observed sounding parameters subtracted

fromR/S parameters): (a)MUCAPE andMUCIN, (b) lowest-100-mbmeanmixing ratio (LOWEST 100MBMIXR) and PW, (c) 0–3-km

LR and 700–500-mbLR, and (d) 0–1- and 0–3-km SRH. Each box denotes the IQR, with themedian indicated by an embedded horizontal

line (except for MUCAPE, where the median and 75th-percentile markers overlap). Dashed lines extend outward to the 10th and 90th

percentiles.
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separated, open-warm-sector convective elements, at

times ahead of more linearly organized convective seg-

ments and clusters. These more separated convective

elements can serve as a signal to operational forecasters

that discrete or semidiscrete cells (perhaps supercells)

would be favored by adequate open-warm-sector ascent,

with such a convective mode offering a wide variety of

potential hazards, possibly including tornadoes.

A couple of examples of the ACM2 scheme, and its

variants, uniquely depicting the most spatially separated

convective elements are provided in ensemble plan-view

depictions are provided in Figs. 20 and 21, with white-

oval annotations provided to highlight areas corre-

sponding to subsequent discussion. Figure 20 indicates

the simulation corresponding to an event consisting of a

quasi-linear band of convection from the Jackson area

extending southwestward to south-central Louisiana,

with separated cells farther east toward the New Or-

leans, Louisiana, area that did produce tornadoes. The

ACM2 scheme, and its variants (especially the ACM35

and ACM45), provided the best indications of an open-

warm-sector separated-updraft regime displaced from

the simulated cluster- and quasi-linear-mode convec-

tion. This simulated convective mode is a critical com-

ponent of the simulation, despite spatial errors, as the

ACM2 and its variants (especially the ACM35 and

ACM45) uniquely offer an indication that cellular con-

vection would be a concern, potentially heightening

awareness among operational meteorologists that a

supercell-tornado risk could occur. The same general

concept is illustrated in Fig. 21 for separated convective

elements from portions of central Alabama to central

Georgia, which did produce tornadoes. Once again, the

ACM2 scheme and its variants (especially the ACM35

and ACM45) offered the strongest signal for more sep-

arated convective elements across the general region

that experienced tornadoes, though spatial errors are

evident.

Similar morphological differences in simulated con-

vection depicted in Figs. 20 and 21 are also apparent in

other cases, though not shown in the present work. A

more thorough analysis of the sensitivity of simulated

convective morphology owing to PBL scheme selection

would be a possible area of future research and would

complement the analysis of environmental parameters.

As a related matter, the influence of cloud coverage, its

depiction, and its manifestation on PBL scheme per-

formance could also be foci for additional research. This

relates to differences in convective morphology, in the

sense that differences in cloud formation and evolution

as simulated by theWRF could have a marked influence

on the simulated thermodynamic and kinematic profiles.

The sensitivity of convective morphology, as cursorily

investigated in the present work, is expected to also

extend to that of cloud coverage and evolution, and this

could be an avenue for future research.

7. Conclusions

As a part of a model evaluation process for the chal-

lenging southeast U.S. cold season severe weather re-

gime, work previously introduced by CCCB15 is

applied, which invokes a warm-sector-based analysis of

forecast soundings compared against a RUC/SFCOA

sounding dataset that incorporates observations. This

permits a reproducible system for the evaluation of

convection-allowing model guidance, which is relevant

for operational meteorology, with the sole focus of the

present work being on model performance using dif-

ferent PBL parameterization schemes.

Through an investigation of nine different PBL

schemes—two nonlocal ones (YSUandMRF), two local

ones (MYJ and QNSE), and one hybrid nonlocal–local

scheme (ACM2) with four newly constructed variants

by modifying Ricrit (ACM05, ACM15, ACM35, and

ACM45)—many distinguishable results became appar-

ent upon comparisons to RUC/SFCOA soundings in the

model evaluation process. First, for 0–3-km lapse rate

and PBL depth, local schemes provide the largest dif-

ferences from RUC/SFCOA as an underestimation,

especially at night. For PBL depth, the smallest error

and the smallest bias component correspond to the

ACM2 (nonlocal–local) and its variants, along with the

YSU (nonlocal) scheme. For 0–3-km SRH, strictly

nonlocal schemes provide the largest mean differences

from observations as an underestimation. Mean mixing

ratio in the lowest 100mb is relatively well forecast by all

PBL parameterization schemes, though a slightly posi-

tive bias is exhibit by nonlocally influenced schemes,

especially the MRF. For all evaluated variables except

MLCAPE, the ACM2 (nonlocal–local) scheme and its

variants never provide the largest simulation mean dif-

ference from RUC/SFCOA output and sometimes

provide the smallest difference and error. MLCAPE is

substantially overforecast by all schemes. While this

encourages the general use of ACM2 and its variants,

there could be specific variables and regimes for which

purely local or purely nonlocal schemes would be more

appropriate for use in simulations, depending on various

atmospheric regimes (i.e., those outlined by CCCB15).

These results regarding nonlocal versus local versus

hybrid nonlocal–local PBL parameterization schemes

can be linked to previous research that demonstrates a

commonality among local schemes to represent too

weak vertical mixing in the PBL while nonlocal schemes

overmix the PBL (e.g., CCCB15; Coniglio et al. 2013;
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Stensrud 2007). Meanwhile, the hybrid schemes in-

dicate more intermediate mixing in the SECOLD re-

gime where vertical shear enhances mixing and

limited instability suppresses mixing, with some of the

aforementioned biases being more muted. This is

consistent with some of the improved profiles of the

PBL demonstrated by using the ACM2 scheme (e.g.,

Pleim 2007b).

FIG. 20. (a)–(i) The 21-h forecast of simulated composite reflectivity (dBZ) for eachWRF PBLmember valid at 0900 UTC 13 Feb 2007

and (j) the observed mosaic composite reflectivity from the NCAR Mesoscale and Microscale Meteorology Laboratory Image Archive

(NCAR 2017) at 0900 UTC 13 Feb 2007. White ovals are overlaid in the panels to indicate regions of convection referenced within the

main text, relevant for differences in convective mode between simulated convection and the observations. The color scale for simulated

reflectivity is somewhat different than for observed reflectivity; however, both color scales are intended to highlight more-intense pre-

cipitation with warmer colors (e.g., red, purple) and less-intense precipitation with cooler colors (e.g., blue, green) for the purpose of

generalizing the convective intensity and mode.
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This entire set of model evaluations for already-

developed PBL parameterization schemes, and modi-

fied ones, represents a new area of study through their

application in an atmospheric regime not commonly

studied. It is clear that the simultaneous representation

of both nonlocal and local mixing is most appropriate for

the SECOLD regime. The ACM2 (nonlocal–local)

scheme and its variants most consistently reduce ex-

treme forms of bias that making a selection of strictly

local or nonlocal PBL parameterization schemes would

produce. Among the variants of the ACM2 scheme, the

ACM05 appears to produce PBL depth and 0–3-km

lapse rate distributions most similar to RUC/SFCOA

output, although by only a small margin compared to

other variants. As such, this study has extended the

current understanding of PBL-scheme performance

forward into the SECOLD regime whose strong-shear

and weak-instability characteristics are thoroughly

documented by CCCB15 and references therein, effec-

tively adding to previous research involving the evalu-

ation of PBL parameterization scheme performance in a

variety of regimes (e.g., Jankov et al. 2005; Hu et al.

2010; Nielsen-Gammon et al. 2010; Coniglio et al. 2013).

These findings can contribute substantially to guiding

the numerical modeling and operational meteorology

community to the most appropriate PBL parameteri-

zation scheme to be used in convection-allowing model

guidance in the SECOLD regime. When considered in

conjunction with analyses of rapidly evolving synoptic-

scale and mesoscale mass fields governing forcing for

ascent, a more complete understanding of the SECOLD

regime can be achieved. Cursory attempts have been

FIG. 21. As in Fig. 20, but for (a)–(i) the 13-h forecast valid at 0100UTC 19 Feb 2009 and (j) the observed at 0057UTC 19 Feb 2009 (closest

archived time).
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performed to investigate the sensitivity of simulated com-

posite reflectivity to altering the PBL scheme, and also to

investigate biases in the RUC/SFCOA dataset in the

SECOLD regime. Future research could, in further detail,

investigate these phenomena. Furthermore, the effects of

changingdomain characteristics suchashorizontal grid length,

numberof vertical levels, andotherparameterization schemes

such asmicrophysics could be foci for additional investigation

for improving numerical models in this regime. Ultimately,

this work sheds light on a severe weather forecast problem

that has had relatively limited treatment in numerical mod-

eling studies. The unique aspects of the SECOLD environ-

ment and many focused clues to assist with its depiction in

numerical modeling identified throughout this work can give

rise to additional investigation of this regime in future studies.
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