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1    INTRODUCTION 
 
Lack of reliable verification is a serious 
impediment to ongoing efforts to improve 
severe wind forecasts. Various prior studies 
(e.g., Weiss et al. 2002, Trapp et al. 2006, 
Smith et al. 2013, Miller et al. 2016) have 
highlighted the potential for substantial 
mischaracterization of the spatial extent and 
intensity of severe wind events through 
reliance on in situ observations and local 
storm reports (LSRs). Observation networks 
and potential damage indicators vary widely 
by geographic region, and wind speed 
estimates (whether obtained from human 
observers at the time of the event or damage 
surveys conducted afterward) are 
notoriously error-prone. Doppler radar 
observations potentially afford better 
coverage but also suffer from errors due to 
beam elevation and wind-direction-relative 
azimuth; furthermore, there are substantial 
holes in the current WSR-88D network, 
particularly over the western United States. 
 
Ideally, an objective analysis of the near-
surface  wind  field  in  the region  of  interest,  
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leveraging these (and other) information 
sources, would be sufficiently accurate to 
serve as “truth” for forecast verification. 
However, considering the rapid evolution 
and small-scale fluctuations that often play 
prominent roles in severe wind events, such 
an analysis would require rapid updates on a 
high-resolution grid. One promising 
candidate is the Warn-on-Forecast System 
(WoFS; Stensrud et al. 2009) maintained by 
the NOAA National Severe Storms 
Laboratory.  
 
WoFS currently consists of 36 WRF-ARW 
members cycled every 15 minutes over a 
targeted (sub-CONUS) domain at 3-km grid 
spacing, potentially fulfilling both the spatial 
and temporal requirements of the task at 
hand. It has shown great promise in 
providing both raw and calibrated guidance 
for a variety of weather hazards (e.g., 
Yussouf and Knopfmeier 2019, Flora et al. 
2019, Galarneau et al. 2022) and has played 
an integral role in the annual NOAA 
Hazardous Weather Testbed (HWT) Spring 
Forecasting Experiments over the past 
several years (Clark et al. 2020, 2022a, 
2022b).  
 
In particular, the investigation of WoFS as a 
severe wind verification tool was motivated 
by its assessment of the derecho that swept 



 

 
Figure 1 Comparison of WoFS wind speed and severe wind LSRs for the 10 August 2020 upper 
Midwest derecho. The color fill based on the left color bar depicts ensemble maxima of 15-
minute forecast maximum 10 m wind speed (left) and 15-minute forecast instantaneous 80 m 
wind speed (right) from successive WoFS cycles from 12 to 20 UTC, while the markers show 
locations of “estimated gust” LSRs (triangles) and “measured gust” LSRs (squares). The marker fill 
color (based on the right color bar) indicates the difference between the LSR gust magnitude and 
the most similar WoFS wind speed within a 20 km radius. 

 
through Iowa on the morning of 10 August 
2020. Retrospectively, WoFS was cycled on a 
600 x 400 grid for the period from 12 to 20 
UTC, and the ensemble maxima of the 15-
minute forecast maximum 10 m wind speed 
and the 15-minute forecast instantaneous 
80 m wind speed for each cycle were 
stitched together and compared with 
locations and magnitudes of severe wind 
LSRs from the Storm Data archive as shown 
in Fig. 1. While the WoFS 10 m winds 
substantially underrepresented both the 
spatial extent and the magnitude of the 
damaging winds, the WoFS 80 m winds (used 
as an analog for the actual surface gusts) was 
highly accurate in both respects. These 
questions are considered herein: (1) Are 
those results representative of the general 
quality of the WoFS depiction of near-
surface winds for potentially-severe 
situations?; (2) Can further improvements 
be realized through simple adjustments 
and/or machine learning? 
  
 

2 DATA AND METHODS 
 
The data set examined here consists of WoFS 
output for 132 event days from 2019 to 
2021, most of them produced in conjunction 
with the annual HWT Spring Forecasting 
Experiment. As in the example shown 
previously, the 15-minute forecast 
maximum 10-m wind speed and the 15-
minute forecast instantaneous 80-m wind 
speed for each member and each cycle were 
stored. (Unfortunately, the 15-minute 
forecast maximum 80 m wind speed was not 
available for the dates in question.) The 
magnitude, time, and location (mapped to 
the nearest grid point) of daily maximum 
ASOS wind speed measurements greater 
than 20 kt and severe wind LSRs listed in the 
Storm Data archive (with the “measured 
gust” label) within the WoFS domain were 
used for verification. The distribution of 
those observations is shown in Table 1. 
 
For each gust observation, the largest WoFS 
ensemble 50th percentile, 75th percentile, 



 

90th percentile, and maximum gust over a +/- 
1 hr window around the observation time (to 
allow for errors in reporting) were obtained 
at the observation location and within 10 km 
and 20 km neighborhoods. In addition, 
“subgrid coverage” features were extracted 
within a 40 km neighborhood 
(corresponding to the grid spacing for the 
current SPC mesoanalysis). Specifically, the 
ensemble-averaged fractions of the 
neighborhood covered by 10 m or 80 m wind 
speeds over 20, 35, 50, or 65 kt were 
calculated, along with the fractions covered 
by radar reflectivity over 20, 30, or 40 dBZ 

and the fractions covered by 2-5 km updraft 
helicity over 10, 25, or 50 m-2s2.   
 

Table 1 Distribution of wind speed 
observations used for verification 

observed speed (kt) sample size (n) 
20-35 4704 
35-50 806 
50-65 506 
65+ 54 

TOTAL 6070 
 

The data were split 2/3 for training and 
calibration and 1/3 for testing. For the 
machine-learning   experiments,   a   gradient

 

 
Figure 2 Bias within different observed wind speed bins for ensemble 50th percentile (“50pc”), 
75th percentile (“75pc”), 90th percentile (“90pc”), and maximum (“MAX”) of WoFS 10 m (“10m”) 
and 80 m (“80m”) wind speed, verified point-to-point (“COL”, blue) or using the 10 km (orange)  
or 20 km (grey) neighborhood maximum.
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boosting regressor (GBR) was used with five-
fold cross validation for tuning. All splits 
were  done chronologically and stratified by 
wind speed to preserve the sample 
imbalance shown   in   Table   1.  (Additional 
machine-learning tests were attempted with 
oversampling of higher wind speed bins to 
produce an even distribution; however, the 
outcome did not substantially differ from the 
results shown here.) 
 
3 RESULTS 
 
3.1 Raw output and simple adjustments 
 
First, note that all of these results pertain to 
the portion of the data set aside for testing. 
The bias and mean absolute error (MAE) for 
the raw WoFS output, verified point-to-point 

or using the 10 km or 20 km neighborhood 
maximum, are shown in Figs. 2 and 3. The 
WoFS 10-m wind showed a consistent strong 
negative bias and substantial MAE at all 
thresholds, worsening as the observed wind 
speed increased. The 80-m wind performed 
better overall, although the results were 
sensitive to the selection of a 
“representative” percentile and 
neighborhood size; for example, the 
ensemble maximum within a 10-km 
neighborhood had a strong positive bias and 
large MAE for winds below 50 kt but was the 
best choice for winds over 50 kt. 
 
It is perhaps more pertinent to examine 
WoFS’ ability to discriminate between winds 
below 35 kt and potentially damaging winds 
above 35 kt or severe winds above 50 kt. The 

 

 
Figure 3 Same as Fig. 2, but for mean absolute error. 
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Figure 4 Performance diagrams for the use of the ensemble 50th percentile (“50pc”, crosses), 75th 
percentile (“75pc”, circles), 90th percentile (“90pc”, triangles), and maximum (“max”, squares) of 
WoFS 10 m winds (left) and 80 m winds (right) to detect winds over 35 kt (a) or 50 kt (b). 
 
performance at detecting winds above 35 or 
50  kt  point-to-point is displayed in Fig. 4. As 
might be expected from the bulk error 
statistics shown earlier, the 10-m winds 
struggled with detection, particularly at the 
50-kt threshold. The 80-m winds were 
substantially more skillful (in terms of Critical 
Success Index [CSI]), with the 90th percentile 
performing best for the 35 kt threshold and 
the ensemble max performing best for the 
50-kt threshold. However, the best 
probability of detection (POD) for the 50-kt 
threshold was still under 0.5, which is not 
ideal for a verification source. Therefore, the 
discussion now turns to efforts to improve 
upon these results by through adjustments 
based on additional ensemble and 
neighborhood-based information. 
 
First, seeking to account for the bias shown 
in Fig. 2, the assumption of equivalence 
between WoFS winds and observations (e.g., 
that a WoFS wind speed of 50 kt should 
correspond to an observed wind speed of 50 
kt) was set aside and the most skillful 

combination of ensemble percentile and 
wind speed threshold was sought for the 
observed 35-kt and 50-kt thresholds. Note 
that, for these adjustment experiments, the 
settings were determined using the training 
data and then applied to the testing data.  
 
For the WoFS 10-m wind, setting a 22-kt 
minimum for the 50th percentile worked best 
for discriminating observed winds above and 
below the 35-kt threshold (POD 0.64, CSI 
0.49), while setting a 22-kt minimum for the 
50th percentile worked best for the 50-kt 
threshold (POD 0.59, CSI 0.41); these values 
are much better than the raw results shown 
in Fig. 4a. For the WoFS 80-m wind, setting a 
31-kt minimum for the 75th percentile 
worked best for the 35-kt threshold (POD 
0.68, CSI 0.46), while setting a 46-kt 
minimum for the ensemble maximum 
worked best for the 50-kt threshold (POD 
0.61, CSI 0.37); these values do not improve 
much on the raw results shown in Fig. 4b and 
actually produce lower CSI than the 
adjustments based on the 10-m winds.  

(b) (a) 



 

A similar process was used to examine the 
use of WoFS wind speed, reflectivity, or 
updraft helicity “subgrid coverage” in 
discriminating at the observed 35-kt and 50-
kt thresholds. The percentile, minimum 
value, and minimum subgrid coverage 
fraction that produced the greatest skill for 
the training data was applied to the testing 
data, and in no case did it improve upon the 
results already obtained. For example, using 
the optimal settings for the WoFS 10-m 
winds to discriminate at the observed 50-kt 
threshold (50th percentile, 35 kt subgrid 
coverage of 0.02 or greater) produced a POD 
of only 0.50 and a CSI of only 0.35. 

 
Using neighborhood maximum wind speeds 
instead of verifying point-to-point yielded 
mixed results. Performance diagrams for the 
10-km and 20-km neighborhoods are shown 
in Fig. 5. For the 35-kt threshold, the 10-m 
ensemble maximum and the 80-m 50th 
percentile were on par with one another and 
slightly more skillful than the best point-to-
point result in Fig. 4 (i.e. using the 80-m 90th 
percentile). For the 50-kt threshold,   the 10-
m winds continued to struggle; the 80-m 90th 
percentile appeared best overall, improving 
somewhat on the best result in Fig. 4 (i.e., 
using the 80-m ensemble maximum.)

 

 
Figure 5 Same as Fig. 4, except for WoFs 10-km neighborhood maximum wind speeds at 10 m (a) 
and 80 m (b) and 20-km neighborhood maximum wind speeds at 10 m (c) and 80 m (d). 
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Ultimately, none of these simple 
adjustments produced a dramatic 
improvement in optimized skill. There are 
indications that further improvement based 
on local information may be possible, 
however. As shown in Fig. 6, if the “best” 
wind speed (i.e., closest to the observed 
value) within the neighborhood was used 
instead of the maximum wind speed, a 
verification-quality analysis would seem 
more attainable, with optimal CSI 
approaching 0.7 for the 35-kt threshold and 
0.6 for the 50-kt threshold. Obviously, the 
feasibility of selecting of the “best” 
neighborhood wind speed a priori is 

dubious; nevertheless, the fact that WoFS 
usually produced a reasonable 
approximation of the truth in close proximity 
to the observation location motivated 
efforts to further benefit from proximity 
information through machine learning. 
 
3.2 Machine learning results 
 
The process of tuning hyperparameters 
produced five GBR models, one for each 
validation fold. All five models were applied 
to the test data, producing five output wind 
speeds which were then averaged to obtain 
the   model   wind   speed   corresponding   to 

 

 
Figure 6 Same as Fig. 4, except for WoFs 10-km neighborhood “best” wind speeds at 10 m (a) and 
80 m (b) and 20-km neighborhood “best” wind speeds at 10 m (c) and 80 m (d).   

(b) (a) 

(d) (c) 



 

each observation. (Other methods, such as 
training a model on the full training dataset 
using the tuned hyperparameters from the 
cross-validation, produced similar outcomes 
to what is shown here.)  
 
The result is displayed in Fig. 7a. First, as a 
side note, the scatter plot highlights a 
scarcity of observations between 40 and 50 
kt. How much of this is due to the selection 
of data (i.e., strictly ASOS observations and 
LSRs,  with no sub-severe observations from 
Mesonet stations or other sources that enter 
the Storm Data pool once the wind speed 
reaches 50 kt) and how much is due to 
rounding and/or misclassification of 
“estimated gust” reports as “measured gust” 
reports in the Storm Data archive is unclear. 
It is apparent that, while the model 
discriminates well at the 35-kt threshold, it 
has a pronounced low bias for observed 
winds of 50 kt or more. However, the cross-
validation process produced intermediate 
results (viz. the output of the models for the 
validation folds) with their own biases. By 
calculating and inverting lines of best fit for 

the validation output for each model, a set 
of linear corrections was obtained which was 
then applied to the testing output.  
 
The outcome is shown in Fig. 7b. The linear 
corrections dramatically improved the POD 
for severe wind observations while only 
modestly increasing the number of false 
alarms. Figure 8 compares the GBR 
performance with the earlier point-to-point 
verification of WoFS 80 m wind speeds. The 
GBR performance at the 35-kt threshold 
(which is not substantially affected by the 
linear corrections) improves noticeably, 
albeit modestly, upon prior efforts. At the 
50-kt threshold, the raw GBR model 
performance is poor, driven (as expected) by 
a low POD. The linear corrections greatly 
improve the POD and CSI, giving the most 
skillful result of any method. However, the 
fundamental shortcomings noted in the 
previous section remain; in other words, 
applying machine learning, while potentially 
beneficial, did not produce a “silver bullet” 
in this case. 
 

 

 
Figure 7 Scatter plots of model wind speed vs. observed wind speed for raw GBR output (a) and 
GBR output with linear corrections applied (b).
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Figure  8 As in Fig. 4b, updated to include point-to-point detection of observed winds at or above 
35 kt using a 31 kt minimum for the WoFS 75th percentile 80 m wind speed (purple), point-to-
point detection of observed winds at or above 50 kt winds using a 46 kt minimum for the WoFS 
ensemble maximum 80 m wind speed (brown), detection of 35 kt winds using the raw GBR model 
output (blue), detection of 50 kt winds using the raw GBR model output (orange), and detection 
of 50 kt winds using the GBR model output with linear corrections applied (green).    
 
4 Questions and Future Work 
 
Several caveats must be included when 
evaluating these results. First, the sample 
size is clearly limited, particularly for 
observations at or above 50 kt. This mainly 
stems from the decision to only include 
measured gusts in order to focus on 
obtaining as accurate a near-surface wind 
speed analysis as possible. With regard to 
the LSRs excluded because they lacked a gust 
measurement, the authors are aware of 
ongoing efforts to develop methods for 
discriminating severe gusts from sub-severe 
gusts in those cases (e.g., the NOAA-ML 
project at Iowa State University) which could 
help alleviate the sample size issue in the 
future. 
 

Second, the lack of 15-minute forecast 
maximum 80-m winds in the WoFS output 
used here may have artificially reduced the 
quality of the results. The forecast maximum 
was available for the 2022 Spring Forecast 
Experiment, and detailed analysis has not 
yet been done (with the Storm Data archive 
only recently updated to include reports 
through May 2022). However, preliminary 
evaluation of bulk error statistics and raw 
data performance using the forecast 
maximum for 2022 show a marked 
improvement over what is shown here for 
the instantaneous 80-m winds from previous 
years, although it is impossible (due, again, 
to small sample size) to know whether this 
finding will prove significant. 
 



 

Finally, reviewing results day-by-day (not 
shown) tends to show that the WoFS wind 
analyses tend to do relatively well for larger-
scale events (e.g. severe MCSs and 
derechos) and struggle for smaller-scale 
events (e.g., isolated or weakly-forced 
convection) for which the narrow wind 
maxima cannot be adequately resolved on 
the 3-km grid used by WoFS. While efforts to 
run WoFS at higher resolution are ongoing 
(e.g., Wang et al. 2022), it is possible that a 
probabilistic treatment of such events would 
yield better results in the meantime. 
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