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ABSTRACT: The purpose of this research is to build an operational model for predicting wildfire occurrence for the
contiguous United States (CONUS) in the 1–10-day range using the U-Net 31 machine learning model. This paper illus-
trates the range of model performance resulting from choices made in the modeling process, such as how labels are defined
for the model and how input variables are codified for the model. By combining the capabilities of the U-Net 31 model
with a neighborhood loss function, fractions skill score (FSS), we can quantify model success by predictions made both in
and around the location of the original fire occurrence label. The model is trained on weather, weather-derived fuel, and
topography observational inputs and labels representing fire occurrence. Observational weather, weather-derived fuel, and
topography data are sourced from the gridded surface meteorological (gridMET) dataset, a daily, CONUS-wide, high-
spatial-resolution dataset of surface meteorological variables. Fire occurrence labels are sourced from the U.S. Department
of Agriculture’s Fire Program Analysis Fire-Occurrence Database (FPA-FOD), which contains spatial wildfire occurrence
data for CONUS, combining data sourced from the reporting systems of federal, state, and local organizations. By explor-
ing the many aspects of the modeling process with the added context of model performance, this work builds understand-
ing around the use of deep learning to predict fire occurrence in CONUS.

SIGNIFICANCE STATEMENT: Our work seeks to explore the limits to which deep learning can predict wildfire oc-
currence in CONUS with the ultimate goal of providing decision support to those allocating fire resources during high
fire seasons. By exploring with what accuracy and lead time we can provide insights to these persons, we hope to reduce
loss of life, reduce damage to property, and improve future event preparedness. We compare two models, one trained
on all fires in the continental United States and the other on only large lightning fires. We found that a model trained
on all fires produced a higher probability of fire.
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1. Introduction

This research explores the impact of modeling choices on
model performance when applied to the task of predicting wild-
fire occurrence for the contiguous United States (CONUS) in
the 1–10-day range through the lens of the U-Net 31 machine
learning model. The ultimate goal is to map out the extent to
which fire occurrence can be predicted in advance of discovery
with the aim of making these predictions available to the wild-
fire community to offer decision support. Fire occurrence pre-
diction (FOP) is described in the work of Karniadakis et al.
(2021) as “(p)redictions of the number and location of fire starts
in the upcoming day(s).” Fire occurrence models historically
use regression methods to model the relationship between his-
torical fire data, such as fire reports, and environmental factors,
such as weather, topography, and fuel.

Previous research has applied several machine learning
models to the task of predicting fire occurrence, most

commonly artificial neural networks, random forests, and sup-
port vector machines (Dutta et al. 2013; Vecı́n-Arias et al.
2016; Sakr et al. 2011). Many incarnations of neural networks
have been used in other research on the prediction of fire
occurrence using machine learning (Vega-Garcia et al. 1996;
Alonso-Betanzos et al. 2002, 2003; Vasilakos et al. 2007;
Dutta et al. 2013, 2016). This work applies a U-Net 31 ma-
chine learning model (Huang et al. 2020). The U-Net 31
model is an extension of the artificial neural network architec-
ture which combines an encoder–decoder architecture with
full-scale skip connections.

Though neural networks have been a successful machine
learning model for modeling fire occurrence (Jain et al. 2020),
they can be complicated to implement, computationally inten-
sive, and difficult to interpret. These issues tend to create bar-
riers to their use and subsequent adoption in operational
settings where they are not the historically preferred model.

This paper demonstrates performance improvement rela-
tive to climatology methods currently used operationally by
employing minimally preprocessed, publicly available data in
combination with an effective machine learning model. Bar-
riers to adoption are addressed by working with datasets and
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performance metrics already familiar to both forecasters and
the fire management community. We identify areas where fire
occurrence is likely, based on environmental factors, without
controlling for cause, size, region, or season. This model is
called the “All Fires” model, and we offer it in comparison to
a model limited to a focus on large lightning fires, called the
“Large Lightning” model. Model performance is analyzed by
region, season, fire size, and fire cause to help identify areas
where model performance can be improved and future work
is proposed to address these areas. In a companion paper,
Earnest et al. (2024), we analyze lessons learned from apply-
ing deep learning to fire occurrence prediction.

2. Related work

A key element of interdisciplinary research is working
closely with subject matter experts to understand the research
space. To inform our understanding of approaches and con-
siderations employed today, we shadowed Storm Prediction
Center (SPC) forecasters as they worked the fire weather
forecast desk, and to ensure we proceeded always with an eye
on operationalization, we collaborated directly with members
of the SPC Science Support Branch. In this section, considera-
tions shared by our subject matter experts are provided and
we describe how we translated those considerations into
modeling choices.

a. Regional and seasonal effects

One prevalent theme communicated to us by our subject
matter experts related the variation in fire occurrence and fire
behavior to the season and the region in which fire exists. For
example, in regard to fire season, there are often more fires in
the summer and fuels are more fire prone during warm, dry
periods, such as drought. Regarding region, fire sizes and
growth rates differ based on the type and state of fuels pre-
sent as well as the topography present in the region. Addition-
ally, the land and fire management decisions made both to
prevent fire and to manage active fire vary by region and are
codified by the various land management entities}both state
and federal. All of these elements are instrumental in effective
fire occurrence prediction, and we have many options as to
how we account for these elements during the modeling task.

With the exclusion of Dutta et al. (2013), who compared ten
different implementations of artificial neural networks and mod-
eled all of Australia, an area of over 2.9 million square miles,
many previous researchers in this space addressed regional differ-
ences by reducing the overland area addressed by their model. In
2002 and 2003, Alonso-Betanzos et al. (2002, 2003) used an artifi-
cial neural network to predict a daily fire occurrence risk index in
the Galicia region of Spain, an area of 11419 square miles. In
2007, Vasilakos et al. (2007) used three different artificial neural
networks (to predict fire weather, fire hazard, and fire risk, re-
spectively) to model the probability of fire occurrence on the
Greek island of Lesvos, an area of 630 square miles. Previous at-
tempts to model fire occurrence, independent of the machine
learning method, focused on overland areas between 630 square
miles and 255541 squaremiles (Jain et al. 2020).

In this work, the CONUS is used, an area of over 3 million
square miles containing many dissimilar regions. This is done
for two reasons. First, it allows us to retain a larger amount of
data for the model to learn from, a choice critical to support-
ing the use of deep learning to create a performative model
for this task. Second, to align with the forecast domain used
by the NOAA/NWS SPC, the entity tasked with national fire
weather prediction within the National Weather Service.

The inclusion of many dissimilar regions does not go unad-
dressed. Instead of following the methods used by previous
researchers and reducing the overland area of our model, we
include variables which codify the differences between dissim-
ilar regions so the model can navigate these dissimilarities ef-
fectively without intervention. Some variables that help us
implicitly communicate differences between regions to the
model are topography, weather, and weather-derived fuel
data. We also include latitude and longitude variables, which
represent the centroids of each of the grid cells (instead of a
categorical variable containing only region names, for exam-
ple). Location variables such as latitude and longitude both
allow the model to draw out relationships between location
and the other variables included in the model and stand in for
confounding variables associated with location either un-
known or absent from the model.

There are few examples in the literature where researchers
limited the seasons included in their models, which aligns with
the approach we adopted in the present work. Some variables
that help implicitly communicate differences between seasons
to the model are weather and weather-derived fuel data. We
included a Julian day (relative to 1 January) as a variable (as
opposed to a categorical variable containing only the four sea-
sons of the year, for example). This “day of year” variable
helps us communicate not only season to the model but week-
ends and holidays (4 July being an example of a holiday with
important human-caused wildfire implications) despite not ex-
plicitly specifying which days are holidays and which days are
weekends. As with latitude and longitude, time variables,
such as the day of year variable, allow the model to draw out
relationships between time and the other variables present in
the model and stand in for any confounding variables associ-
ated with time that are either unknown or absent from the
model.

Model performance is evaluated in the context of both sea-
son and region so we can identify areas where more informa-
tion may be needed for the model to navigate effectively. For
this purpose, “regions” are defined to be the eight fire regions
defined by the U.S. Forest Service and depicted in Fig. 6 (U.S.
Forest Service 2023). A “season” is defined as the division of
the year into quarters by month, with March, April, and May
representing spring and June, July, and August representing
summer.

b. Fire size and cause

Fire size, as described by the observational data, is the final
fire size. This variable is affected by circumstances in the field,
for example, the presence of fire breaks such as rivers and
roads, and by fire management decisions made before and
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after the fire occurrence has been discovered. For example,
fire managers may more aggressively contain a fire near a high
population area, resulting in a smaller final fire size. While the
definition of “large” varies, to align more closely with existing
climatology tools, we define large as any fire with a final fire
size of greater than or equal to one thousand acres.

Many previous research attempts in fire occurrence address
the complexity introduced by multiple fire causes by limiting
their focus to a single fire cause much in the same way that
previous research addressed regional effects by limiting the
overland area considered by the model. Vega-Garcia et al.
(1996) used an artificial neural network to predict human-
caused wildfires in Alberta, Canada. Vecı́n-Arias et al. (2016)
used a random forest model to predict lightning-caused fires
in the Iberian Peninsula. In an approach that limited both
cause and region, Fusco et al. (2016) used the Fire Program
Analysis Fire-Occurrence Database (FPA-FOD) dataset to
quantify the role of humans in fire ignition in the western
United States.

The fire occurrence dataset we used contains three fire
causes: human, natural, and unknown. Large, lightning-caused
fire (codified in our label dataset as “natural” fires) is an oper-
ational concern of many fire management entities. Between
the years 2000 and 2020 according to FPA-FOD, there are
over 1.6 million fire occurrences recorded for CONUS, result-
ing in a little less than 120 million acres burned. Large light-
ning fires account for 47.24% of the total acres burned while
comprising only a little under 5000, or 0.29%, of the total fire
occurrence, a low-frequency, high-impact event.

As with regional and seasonal effects, fire size and fire
cause have important impacts on modeling decisions. While
we addressed regional and season effects using model inputs,
as described in the previous section, for fire size and cause ef-
fects, we used model labels. This allows us to measure the size
of the effect fire size and cause have on model performance.
We produced a model that predicted the probability of dis-
covery of fire (any size or cause) and measured how it per-
formed relative to a model that predicted only the probability
of discovery of large, lightning fire. By increasing the con-
straints under which a label can be considered to contain the
event of interest, we were able to explore the relationship be-
tween the density of labels available to a model and model
performance without reducing the coverage of the dataset in
time or space. We observed that model performance de-
creased as the constraints on the label increased. Model per-
formance was then compared based on general performance,
on performance on only large lightning days and grid cells, on
case studies representing the largest lightning fires for each of
the years in the test dataset, and on case studies representing
the most fire-prone days of the year for both human-caused
fire and lightning-caused fire.

3. Data

To train our model, we used two datasets, recommended by
our subject matter experts and used operationally by fire weather
forecasters. Inputs are sourced from gridded surface meteorologi-
cal (gridMET), a daily, CONUS-wide, high-spatial-resolution

dataset of observed surface meteorological variables, that in-
cludes weather-derived fuel variables (Abatzoglou 2013). La-
bels are sourced from FPA-FOD, which contains spatial
wildfire occurrence data for CONUS, combining data sourced
from the reporting systems of federal, state, and local organi-
zations (Short 2022). We consider the observations sourced
from FPA-FOD to be our ground truth.

We sourced data for all of CONUS for the years 2000–2020,
inclusive, using the discovery date of the fire. We recognize
that some uncertainty is introduced by the choice of discovery
date as the initial point of consideration for each fire as fires
can smolder and not be discovered for some time post-
ignition, but, at this time, this is the best available information
that tells us about the earliest stages of a fire. In the case of the
“All Fires model, we sourced all instances of fire occurrence
regardless of size, cause, or region for inclusion in the CONUS
label images. In the case of the Large Lightning model, we
sourced only instances of fire occurrence with a cause of natu-
ral and a final fire size greater than 1000 acres for inclusion in
the CONUS label images. Controlled fires are not included in
our dataset.

a. gridMET

gridMET combines climate data from the Parameter-Elevation
Regressions on Independent Slopes Model (PRISM) with tempo-
ral attributes from regional reanalysis (NLDAS-2). gridMET is
validated against a network of weather stations [Remote Auto-
matic Weather Stations (RAWS), Agricultural Meteorology
(AgriMet), Agricultural Weather Network (AgWeatherNet), and
USHCN version 2 (USHCN-2)]. The resulting dataset is both
spatially and temporally complete, providing daily coverage over
the entire CONUS for the years in the dataset used for this work
(Abatzoglou 2013).

Input images were sourced from gridMET representing
weather variables, such as precipitation, weather-derived fuel
variables, such as energy release component, and a topogra-
phy variable, elevation. Input images for the model are de-
picted in Fig. 1, and a full list of input variables can be found
in Table A1 in appendix A. Readings from the CONUS for
the years 2000–20, inclusive, were used to align with future in-
put data and current operational needs. As previously de-
scribed, latitude and longitude variables were included to
represent the centroid of each grid cell and a day of year vari-
able was included to represent the Julian day.

1) PREPROCESSING

For input variable sourced from gridMET, minimal prepro-
cessing was employed. Further discussion of our preprocess-
ing choices can be found in Part II, Earnest et al. (2024).
Using linear interpolation, data were mapped from their na-
tive 4-km grid data to a 40-km grid to align with operational
weather products. We conducted a lengthy investigation of
using a 3-km grid and found that it was not feasible given time
and computation constraints. Data were normalized to a value
between 0 and 1 (a valuable preprocessing step for neural net-
works). Otherwise, data were left in their original form.
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A linear normalization calculation is used to normalize val-
ues to values between 0 and 1:

Zi 5 [Xi 2 min(X)]/[max(X) 2 min(X)]: (1)

2) INPUT DATA LATENCY

As the goal of our work is to produce an operationalizable
model, for which this work presents a proof of concept, input
data latency is a consideration. gridMET represents observa-
tional data from midnight to midnight, western time. gridMET
is updated daily, between approximately 0500 and 1430 Pacific
time (depending on the variable) with yesterday’s data, result-
ing in about a day and a half of input data latency.

Depending on what time today forecasters looked at grid-
MET, the most recently available data would be either yester-
day’s data or the day before yesterday’s data. While it is
generally acknowledged within CIWRO and SPC that, at a min-
imum, day of observational data would be preferable, gridMET
is the preferred source for common variables used operationally
by fire weather forecasters, such as energy release component
(ERC), and, therefore, the source used for this work as well.

We are insulated from the impact of this latency because
our model sources input data from the previous day. The fire
occurrence predictions generated by our model for today were
created using the input data from yesterday. This is by design
and intended to align with the update frequency of gridMET.

b. FPA-FOD

FPA-FOD is a spatial database of U.S. wildfires created
and updated by Short (2022). Data for FPA-FOD are sourced
from the National Interagency Fire Management Integrated

Database, the U.S. Department of the Interior (USDI) Wild-
land Fire Management Information System, the Fish and Wild-
life Service (FWS) Fire Management Information System, the
National Association of State Foresters database, the National
Fire Incident Reporting System, the Integrated Reporting of
Wildland Fire Information application, the Interagency Fire
Occurrence Modules, the ICS-209 module of the SIT-209 Pro-
gram, and 33 U.S. states and the territory of Puerto Rico.

While Short removed redundancies and applied error checking,
FPA-FOD is not without limitations. Data were not available for
all years for all states. To establish a measure of completeness of
the data for fire count and area burned, Short compared FPA-
FOD by state and year to national estimates of wildfire numbers
and burned area. States were either given a score between 0 and
10 to indicate agreement between these values or no score to indi-
cate omission due to reporting bias for the given time period, of
which there were two depicted, 1992–2011 and 2002–2011. Low
scores, indicating relative incompleteness of the data for that area
for both time periods, were given to Missouri, Indiana, Ohio,
Vermont, New Hampshire, Massachusetts, Rhode Island, and
Delaware. No score, representing identified reporting bias,
was given to Iowa, Illinois, Kansas, New York, and Texas.

As with gridMET, the years 2000–2020, inclusive, and only
fire occurrence instances from the CONUS were sourced
from FPA-FOD. Which instances were sourced from FPA-
FOD for inclusion in the label images was determined by the
model. For the All Fires model, all fire occurrence instances
were sourced, regardless of fire size, fire cause, or region of
discovery. For the Large Lightning model, only fire occurrence
instances with a cause of natural and a final fire size greater than
1000 acres were sourced. The discovery latitude and longitude
of each fire occurrence instance were mapped to a 40-km grid,

FIG. 1. Normalized gridMET inputs as consumed by the model.
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resulting in 7671 CONUS-wide label images for each model
(7661 label images after removing the last 10 days of the dataset,
which could not be modeled for all future days).

Of the 7661 label images, for the Large Lightning model,
only 22.74% of label images had one or more fire occurrences
represented in all of CONUS (with 77.26% of label images
containing no fire occurrence anywhere in CONUS for that
day). Of the 16 384 (128 3 128) pixels present in each image,
between 0.00% and 0.20% of pixels were labeled as contain-
ing a fire occurrence. For the All Fires model, fully 100% of
label images had at least one fire occurrence represented
somewhere in CONUS and between 0.04% and 3.42% of pix-
els were labeled as containing a fire occurrence.

1) ADDRESSING IMBALANCE

There were two types of imbalances present in the label da-
taset. The first type of imbalance is a class imbalance in favor
of “no fire” (or a scarcity of the event among the label im-
ages). For example, for the Large Lightning model, nearly
80% of label images had no fire occurrence anywhere in
CONUS. The second type of imbalance is a pixel imbalance
within the label images in favor of no fire (or a scarcity of the
event within the label images). For example, for the All Fires
model, at best, less than 4% of pixels in a label image were la-
beled with a value of 1 to indicate “fire.”

To address the class imbalance, undersampling of the class
of interest, that of fire, was performed by dropping any image
from the training dataset containing less than or equal to two
fire occurrence instances within the image. Undersampling
was performed for the training dataset only. Two instances of
fire were selected as the cutoff for image exclusion by compar-
ing the average percent of pixels per image to the percent of
label images that could be retained at a given cutoff. The
point at which the two lines intersected (albeit, on a multiple-
axis plot), as depicted in Fig. 2a, was then selected as the cut-
off. As the Large Lightning model had a lower percentage of
label images with instances of fire available, the cutoff for
both models was determined by the cutoff most appropriate for
the Large Lightning model to ensure as many label images as

possible were retained while increasing the frequency of the
class of interest as much as possible. For the Large Lightning
model, a cutoff of greater than or equal to 2 allowed 12% of the
training images to be retained and, for the All Fires model, al-
lowed 100% of the training images to be retained.

To address the pixel imbalance within the label images, for
the label images which remained after class imbalance had been
addressed, two additional methods were used when depicting
fire occurrence instances within the CONUS label image. The
two methods, described below as the “neighborhood” method
and the “time smoothed neighborhood” method, allowed fire
occurrence instances to be depicted more prominently in time
and space. These additional methods were applied to the train-
ing dataset only, which allowed for data augmentation and
helped to ensure the model was able to learn meaningfully
about the event of interest.

2) LABELING METHODS

For the training dataset, three methods for depicting fire oc-
currence within the CONUS label images were used: the “pixel”
method, the neighborhood method, and the time smoothed
neighborhood method. All three methods were used together for
training. Only the pixel method was used for validation and test.
These methods are depicted in Fig. 3.

The pixel method provided a binary representation of fire
occurrence within the CONUS label image. Each CONUS la-
bel image represented 1 day for all of CONUS and contained
16 384 pixels. Each pixel represented a single grid cell from a
40-km grid. On a given day, within a given grid cell, if one or
more fire occurrences were discovered, the grid cell was given
a value of 1. If no fire occurrences were discovered, the grid
cell was given a value of 0.

The neighborhood method builds upon the pixel method
by increasing the size and numerical prominence of the pixel
label using a linear decay approach. A central value of 1 was
maintained, surrounded by values of 0.66, and then by values
of 0.33, as depicted in Fig. 3. This method was chosen to make
the binary labels more visually prominent so they would be
easier for the model to see.

FIG. 2. Observation loss vs percent fire pixel increase by the cutoff.
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The time smoothed neighborhood method builds upon
both the pixel and neighborhood methods by increasing the
size of the label in both time and space. It took into account
the 3 days prior and 3 days after the fire occurrence discovery
date. The neighborhood method is used for the discovery
date and then reduced in both size and numerical prominence
each day as it moves away in either direction from the date of
discovery in time, as depicted in Fig. 3. This method was cho-
sen because it mimics the method used to produce the SPC
fire climatology to which we compare model performance.

4. Methods

In this work, the modeling of fire occurrence is approached
as an image segmentation task. By doing so, we were able to
consider inputs and provide predictions for the entire CONUS
area while adjusting grid size to align with operationalized
weather products. In support of this approach, a model archi-
tecture suited to image segmentation, the U-Net 31 model
(Huang et al. 2020), was selected.

Both models were trained on the same domain of input
data}same days, same grid cells, and same input variables. The
difference between the two models is the instances of fire de-
picted in the label images. The All Fires model was given
CONUS images depicting all fires from the time period, regard-
less of size, cause, or region. The Large Lightning model was
given CONUS images depicting only those instances of fire
caused by lightning with a final fire size greater than or equal to
1000 acres. Described in Table A1 in appendix A are details on
how data were divided into training, validation, and test.

a. U-Net 31

AU-Net is a type of convolutional neural network (CNN) ar-
chitecture with an encoder–decoder structure, often depicted in
the shape of a “U.” The encoder half of the architecture captures

feature maps while reducing the resolution and size of an image
as it passes from the upper layers to the lower layers, a process
called downsampling. The decoder half of the architecture re-
builds the image to its original resolution, a process called upsam-
pling. The encoder–decoder architecture is depicted in Fig. 4.

The encoder–decoder architecture has a vulnerability in that in-
formation is lost as an image is reduced in resolution and size dur-
ing the downsampling process. To compensate for this information
loss, the U-Net architecture incorporates same-scale skip connec-
tions, a connection between two layers, from the encoder to the de-
coder, at the same level within the architecture. Different-scale
skip connections allow feature maps from different layers to be
propagated both from the encoder to the decoder and from lower
layers of the decoder to higher layers of the decoder and holds the
added benefit of allowing the model to learn from multiple types
of featuremaps simultaneously.

The U-Net 31 architecture is unique from previous U-Net ar-
chitectures (U-Net and U-Net11) because it uses full-scale skip
connections, a combination of same-scale skip connections and
different-scale skip connections. This allows both the reduction
in information loss and the learning of multiple types of feature
maps (both fine-grained detail and coarse-grained semantics) si-
multaneously. The amount of interconnection provided by full-
scale skip connections has allowed the U-Net 31 to perform
skillfully on image segmentation tasks (Huang et al. 2020), which
is recommended for use in this work, as we used an image seg-
mentation approach. Configuration details of our U-Net 31 im-
plementation can be found in Tables A2–A4 in appendix A.

b. FSS

During the task of image segmentation, a model is asked to
receive inputs and produce a dense label, in which a predic-
tion for the event of interest is generated for each pixel in an
image. The challenge of this approach is that it can be position

FIG. 3. Values for FPA-FOD labels: pixel, neighborhood, and time smoothed neighborhood.
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dependent. If the prediction is off by 1 pixel, it can be consid-
ered to be wrong depending on the loss function used to opti-
mize the model. After discussing with the subject matter
experts, it was determined that prediction of the event in and
around the pixel in which the event was discovered would be
sufficient to meet operational needs owing to the belief that
positioning fire management resources within proximity of
potential fire would provide adequate coverage to take timely,
mitigating action. In support of this, we selected a loss func-
tion that takes a neighborhood approach to model optimiza-
tion, meaning that if the model prediction is close to the event
but not exactly on it, the model is not penalized during the
model training process. The FSS (Roberts and Lean 2008)
loss function was selected. It uses neighborhood averaging to
compare the image containing prediction values to the image
containing observed labels, which allows it to consider both
the label and its surrounding pixels when calculating the loss
associated with those two images.

FSS for a neighborhood of size n is calculated using the
equation:

FSS(n) 5 1 2 MSE(n)/MSE(n)ref: (2)

Given a grid, observed and forecast fractions are calculated
by computing the fraction of surrounding grid points for every
grid point within a given neighborhood that exceeds a given
threshold. MSE(n) refers to the mean square error (MSE) for
the observed and forecast fractions for a neighborhood of size

n, and MSE(n)ref refers to the highest MSE obtainable from
the observed and forecast fractions.

c. Grouped k-fold cross validation

Cross validation is a method for evaluating machine learn-
ing models whereby available model data are divided into
three, independent, subsets, one for training, one for valida-
tion, and one for testing. The process of defining each of the
three subsets is repeated multiple times, called cross-validation
rotations, resulting in different data being assigned to different
subsets for each rotation. Through this process, the model’s
ability to generalize to unseen data can be estimated. In this
work, a grouped k-fold methodology was used for cross valida-
tion. Grouped k-fold methodology is a type of k-fold cross val-
idation in which the folds created for the data represent the
set groups of samples. Grouping samples in this way allowed
us to keep contiguous years together so as to avoid contami-
nating the validation or test dataset with correlated data from
the training set, known as temporal autocorrelation.

Details of our cross-validation approach can be found in
Fig. A1 in appendix A. The dataset was divided into seven folds
with three contiguous years each. Six cross-validation rotations
were performed. The years 2018–2020, inclusive, were held
out as the testing dataset for all rotations as they were the
most current data in the dataset and might allow the most rep-
resentative view into how the model would generalize to fu-
ture data. The fold dedicated to the validation dataset was

FIG. 4. Breakdown of the U-Net 31 architecture: (a) encoder–decoder architecture, and kernels; (b) same-scale skip connections;
(c) different-scale skip connections; (d) full-scale skip connections.
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rotated through the remaining six folds, and the five folds not
dedicated to testing or validation in each rotation was left for
the training dataset. We assume that by dividing the data be-
tween training, validation, and testing using this method, inde-
pendence is maintained between the three datasets. We make
this assumption with fire ecology in mind, and the understand-
ing that wildfire trends can span not just seasons, years, and
decades, but millennia (National Wildfire Coordinating Group
2022).

d. CSI

Critical success index (CSI) is a performance metric used to
evaluate model predictions within the National Weather
Service (Schaefer 1990). By using a metric familiar to fire
weather forecasters, barriers to understanding and adoption
are lowered and a basis of comparison is established between
this work and other works familiar to forecasters. The CSI
metric relies on two submetrics, the probability of detection
(POD), which is the percent of events predicted, and the false
alarm rate (FAR), which is the ratio of false alarms to pre-
dicted events. At the heart of the CSI is the 23 2 contingency
matrix, capturing hits, misses, false alarms, and correct
rejections.

CSI 5 [(POD)21 1 (1 2 FAR)21 2 1]21: (3)

As the models explored in this work were trained using a
neighborhood loss function, a neighborhood approach to
measuring model performance was also necessary. We mea-
sured CSI for neighborhoods of size 40, 80, and 120 km, with
40 km representing a hit directly on the label pixel itself,
80 km representing a hit within one neighboring pixel of the
label, and 120 km representing a hit within two neighboring
pixels of the label. We chose to stop at a 120-km neighbor-
hood because it was as large as was operationally useful for
our subject matter experts.

5. Results

In this work, model performance was explored using multiple
approaches. First, general model performance was compared
using CSI. CSI was generated by comparing the predictions of
each model to the model’s observation values for the test data-
set. The All Fires model used observed pixel labels generated
using all fire occurrence instances from FPA-FOD. The Large
Lightning model used observed pixel labels generated using
only fire occurrence instances with a cause of natural and a final
fire size greater than 1000 acres from FPA-FOD. Additional
general performance information, using the same CSI calcula-
tions just described, are available in the appendix in the form of
performance plots and reliability diagrams for all 10 days of pre-
diction and both models in Figs. B1–B4 in appendix B.

Second, general model performance CSI was stratified by
region and season to enable us to further explore where and
when each model performed best and to lay bare potential
opportunities for improvement.

Third, themodels were compared using CSI created withmodel
predictions and observed values from only the areas of CONUS
and days of year subject to Large Lightning fires to estimate how
eachmodel performed on the same general subset of labels.

Finally, the two models were compared on how they per-
formed on the largest lightning fires in the test dataset relative
to climatology performance using the probability of fire gener-
ated from each model for the day of discovery and days preced-
ing discovery and those grid cells representing the 40-, 80-, and
120-km neighborhoods.

a. General performance

To compare general model performance using CSI, the maxi-
mum CSI value was taken from the performance plots depicted
in Figs. B1 and B2 in appendix B and plotted for all days 0–10
with day 0 representing the current day, day 1 representing the
next day, and so on. All days were given inputs from day 21,
the day prior to the current day. Model predictions produced

FIG. 5. Max CSI values and probability thresholds.
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by each cross-validation rotation were averaged together to pro-
duce the predictions used to calculate CSI. There are three im-
portant trends that can be observed in Fig. 5.

First,model performance did not demonstrate a dramatic down-
ward trend across corresponding thresholds as predictions moved
away from the current day in time. This illustrates that the predic-
tive power of the model did not decrease as the time lag between
inputs and labels increased from 0 to 10 days and suggests that
each model could continue to demonstrate similar performance
for days greater than 10 days, thoughwe have not yet tested this.

Second, model performance differed by neighborhood size.
The 120-km neighborhood consistently outperformed both
the 80-km neighborhood and the 40-km neighborhood. The
relatively higher performance demonstrated by the 120-km
neighborhood is likely explained by the fact that it is larger
than the other two neighborhoods explored and, as a result of its
larger size, allows the model more opportunities to be “right.”
This can be seen in Fig. 5 and Figs. B1 and B2 in appendix B.
Seen for the All Fires model in the reliability plots, depicted in
Figs. B3 and B4 in appendix B, overforecasting is a common
trend for the 40-km neighborhood, while underforecasting is a
common trend for the 120-km neighborhoods. The 80-km neigh-
borhood achieves some level of reliability for early predictions
before moving into overforecasting. For the Large Lightning
model, overforecasting is common for all neighborhoods.

Third, the All Fires model consistently produced higher CSI
values than the Large Lightning model for all days predicted and
for all neighborhoods calculated, as depicted in Fig. 5. The higher
CSI values observed from the All Fires model may be associated
with probability predictions which demonstrate less localization.
This lack of localization in predicted probabilities may stem from
both the higher density of fire occurrence in more areas of
CONUS (as present in the All Fires labels) and the use of data
which includes consideration for fuel and topography (both of
which change at a slower rate than weather data). Nonzero proba-
bilities covering larger areas of CONUS produced by the All Fires
model can be observed in all three of our case studies (Figs. 11–13).

b. Regional performance

To break CSI results down by region, we used the Forest
Service Regions created by the U.S. Forest Service (2023), as
depicted in Fig. 6. Figure 7 depicts the regional stratification
of maximum CSI values for both models, and from it, two
themes can be observed.

First, maximum CSI performance differed by region as can
be observed in Fig. 7. Some regions had higher maximum CSI
performance than other regions, as in the case of the Pacific
Southwest region for all neighborhoods for the All Fires model
and the case of the intermountain region and the southwestern re-
gion for the Large Lightning model for the 120-km neighborhood.
Some regions had lower maximum CSI performance than other
regions, such as the eastern region and northeastern area, the
northern region, and the intermountain region for the 120-km
neighborhood for the All Fires model and with the Rocky Moun-
tain region and southern region for the Large Lightning model
for the 80- and 120-km neighborhoods. When a region performed
better than other regions, two possible interpretations were that
1) the region of interest with higher performance contained more
of the data or 2) the inputs selected for the model were more rep-
resentative of fire behavior in that region. Most of the cases cited
herein were subject to the first interpretation, save the case of the
Pacific Southwest region for all neighborhoods for the All Fires
model, which was likely subject to the second interpretation.

Fire occurrence counts by region (which apply to the All Fires
model) and large lightning fire occurrence counts by region
(which apply to the Large Lightning model) can be observed in
Fig. 6. It is important to remember, when observing Fig. 6, that
the All Fires model included all fires, regardless of size, cause, or
region. We can see in Fig. 6b that the southern region is home to
the majority of fire occurrences, regardless of cause. Large light-
ning fires are more prevalent in the intermountain and southwest-
ern regions but are relatively small contributors to the larger fire
occurrence counts when cause and size constraints are removed.

Second, the average maximum CSI performance was higher
for all regions, for all neighborhoods, and for the All Fires
model than for the Large Lightning model. Figure B5 in
appendix B depicts the average maximum CSI performance
for all regions for all neighborhoods for both models.

c. Seasonal performance

To break CSI performance down by season, we divided the
year into quarters by month. Figure 8 describes which months
were associated with each season. Figure 9 depicts the maxi-
mum CSI performance stratified by season for each neighbor-
hood for both models and, in it, can be seen a repeat of
themes seen in the regional stratification of performance.

First, maximum CSI performance differed by season, as de-
picted in Fig. 9. Some seasons performed better than others, as

FIG. 6. (a)–(c) Fire regions; (a) is adapted from the U.S. Forest Service (2023).
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with the spring and summer seasons for all neighborhoods and the
All Firesmodel andwith the summer season for all neighborhoods
for the Large Lightning model. With seasonal performance, when
the performance differed between seasons, the season with the
higher performance containedmore of the fire occurrence data, as
was the case for all instances described herein. Fire occurrence
counts by season (which applies to the All Fires model) and large
lightning fire occurrence counts by season (which applies to the
Large Lightningmodel) can be observed in Fig. 8.

Second, average maximum CSI performance was greater for
all seasons for all neighborhoods for the All Fires model than for
the Large Lightningmodel, as depicted in Fig. B6 in appendix B.

d. Large lightning performance

To compare the All Fires model to the Large Lightning
model more directly, we took the predictions generated by

each model for only a subset of days and grid cells subject to
large lightning fires and calculated CSI performance for each
model using this subset of predictions. Figure 10 depicts the re-
sulting maximum CSI values for each model. As with general
performance, model performance differed by neighborhood,
with the 120-km neighborhood outperforming the 40- and 80-km
neighborhoods. Model performance was consistent from day 0
to day 10 for both models. For all days, for all neighborhoods,
the All Fires model outperformed the Large Lightning model.

e. Case studies

For case studies, we selected the largest lightning-caused
fires from each year of the test dataset, which included 2018,
2019, and 2020. We compared the average (averaged across
all cross-validation rotations) probability of fire produced by
each model to the probability of wildfire produced by the SPC

FIG. 8. Fire seasons.

FIG. 7. Max CSI values by region for the All Fires model and the Large Lightning model.
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wildfire climatology (N. Nauslar 2020). SPC’s climatology uses
an 80-km grid and reports the probability of wildfire within
25 miles, or approximately 40 km, and sources FPA-FOD
years 1992–2015. SPC’s climatology produces probabilities
between 1% and 25%. The models in this work used a
40-km grid and reported the probability of wildfire within
40, 80, and 120 km and sourced FPA-FOD years 2000–2020.
A “hit,” when comparing the models from this work to the
climatology, was anytime the model average probability
outperformed the climatology average probability. For all
case studies, for both models, performance was consistent
across neighborhoods.

We also included case studies that described the behavior
of the All Fires model and the Large Lightning model on the
day of the year most common for human-caused fire, 4 July,
and for lightning-caused fire, 22 July.

1) SOUTH SUGARLOAF FIRE: 2018 LARGEST

LIGHTNING FIRE

The South Sugarloaf Fire, caused by lightning, was discov-
ered on 17 August 2018 in the Humboldt National Forest in
northern Nevada and burned approximately 232906 acres fueled
by grass, brush, and juniper (State of Nevada 2018). Figure 11
describes the probabilities depicted by the SPC climatology, the
All Fires model, and the Large Lightning model for the South
Sugarloaf Fire. The SPC climatology depicted a probability be-
tween 0.05 and 0.1, with an average value of 0.075, for the 10
days prior to the discovery date for the location of discovery for
the South Sugarloaf Fire. The All Fires model predicted a
greater average probability of fire than the average probability
produced by the climatology starting 3 days prior to the dis-
covery date and greater than the maximum probability pro-
duced by the climatology on to the discovery date for the

FIG. 9. Max CSI values by season for the All Fires model and the Large Lightning model.

FIG. 10. Max CSI values for Large Lightning labels for the All Fires model and the Large Lightning model.
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FIG. 11. Probability of fire: South Sugarloaf Fire, 2018 largest lightning fire.
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FIG. 12. Probability of fire: Sheep Fire, 2019 largest lightning fire.
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FIG. 13. Probability of fire: Doe Fire, 2020 largest lightning fire.
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location of discovery. The Large Lightning model did not
produce a probability prediction greater than the average cli-
matology probability, with probabilities lower than the mini-
mum climatology probability for the 10 days prior to the
discovery date.

2) SHEEP FIRE: 2019 LARGEST LIGHTNING FIRE

The Sheep Fire, started by lightning, was discovered on
22 July 2019, in Idaho near Idaho Falls, and burned approxi-
mately 112 106 acres (Idaho National Laboratory 2019).
Figure 12 describes the probabilities depicted by the SPC climatol-
ogy, the All Fires model, and the Large Lightning model for the
Sheep Fire. SPC climatology depicted a probability between 0.025
and 0.1, with an average of 0.0625, for the 10 days prior to the dis-
covery date for the location of discovery for the Sheep Fire. The
All Fires model predicted a greater average probability of fire
than the average climatology for all 10 days prior to the discovery
date and a greater average probability than the maximum clima-
tology 1 day prior to the discovery date for the location of discov-
ery. The Large Lightning model, while it did not produce
probabilities greater than the average climatology probability, did
produce average probabilities greater than the climatology mini-
mum for all 10 days prior to the discovery date.

3) DOE FIRE: 2020 LARGEST LIGHTNING FIRE

The Doe Fire, started by lightning, was discovered on
16 August 2020, in the Mendocino National Forest in California,
and, as a part of the August Complex, burned approximately
1032648 acres (Cal Fire 2020). Figure 13 describes the probabili-
ties depicted by the SPC climatology, the All Fires model, and
the Large Lightning model for the Doe Fire. SPC climatology de-
picted a probability between 0.02 and 0.05, with an average of
0.035, for the 10 days prior to the discovery date for the location
of discovery for the Doe Fire. The All Fires model predicted a
greater average probability of fire than the average climatol-
ogy on the date of discovery for the location of discovery. The
Large Lightning model did not produce probabilities greater
than the average climatology probability, nor did it produce
average probabilities greater than the climatology minimum,
for all 10 days prior to the discovery date.

4) MOST COMMON DAY FOR LIGHTNING-CAUSED FIRES:
22 JULY

According to the work of Balch et al. (2017), across the
21 years of data from FPA-FOD which they evaluated, the
most common day for lightning-caused fires in the contiguous
United States is 22 July. Figure 14 depicts model performance

FIG. 14. Probability of fire: 22 Jul 2018, 2019, and 2020.
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for 22 July for the years 2018, 2019, and 2020. The Large
Lightning model produces more localized predictions, and
while the probabilities are lower, the predicted areas capture
almost all of the large lightning instances discovered on that
day for all 3 years. The All Fires model produces larger areas
to be fire prone, including those areas in which large lightning
fires were discovered, and predicts a higher probability for
these areas.

5) MOST COMMON DAY FOR HUMAN-CAUSED FIRES:
4 JULY

In the work of Balch et al. (2017), which used FPA-FOD,
they found that “(h)uman-started wildfires accounted for
84% of all wildfires, tripled the length of the fire season, dom-
inated an area seven times greater than that affected by light-
ning fires, and were responsible for nearly half of all area
burned.” For these reasons, we feel it is important not to lose
sight of model performance in the context of human-caused
fires. Figure 15 depicts model performance on the most com-
mon day for human-caused wildfires in CONUS, 4 July, for
the years 2018, 2019, and 2020. The All Fires model predicts
larger areas to be fire prone at higher probabilities, while the
Large Lightning model predicts much smaller areas at much

lower probabilities to be fire prone. While the All Fires model
does not catch all instances of fire (depicted in purple),
California being the most notable area of misses depicted, the
Large Lightning model does not catch most of the large light-
ning fires discovered on that day.

6. Discussion and future work

In this work, we presented a proof of concept for an opera-
tionalizable fire occurrence prediction model for CONUS.
We explored the comparison of the All Fires model to the
Large Lightning model. The All Fires model outperformed
the Large Lightning model in all three methods of compari-
son: general performance, large lightning performance, and
case study performance.

First, the All Fires model produced higher CSI than the
Large Lightning model on all three neighborhoods (40, 80,
and 120 km). Second, the All Fires model and the Large
Lightning model were compared based on how they per-
formed on the subset of days and grid cells subject to large
lightning fires. Here again, the All Fires model produced a
higher CSI than the Large Lightning model for all neighbor-
hoods calculated. Third, the All Fires model and the Large
Lightning model were compared based on how each model

FIG. 15. Probability of fire: 4 Jul 2018, 2019, and 2020.
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performed on the largest of large lightning fires for the 3 years
contained within the test dataset: the 2018 South Sugarloaf
Fire, the 2019 Sheep Fire, and the 2020 Doe Fire (as part of
the August Complex). In all three case studies, the All Fires
model produced higher CSI values than the Large Lightning
model for all 10 days leading up to the date of discovery for
each fire. In all cases, the All Fires model was able to outper-
form the SPC wildfire climatology, at least on the discovery
date of the fire, as in the case of the 2020 Doe Fire, and, at
most, 10 days prior to the discovery date of the fire, as in the
case of the 2019 Sheep Fire. In none of the three cases, on
none of the days calculated, was the Large Lightning model
able to produce higher CSI values than the SPC wildfire cli-
matology or the All Fires model.

In summary, the All Fires model produced higher CSI val-
ues than the Large Lightning model in general, on large light-
ning fires, and on the largest of large lightning fires present in
the most current data in the dataset. The All Fires model re-
sulted in a model simultaneously more performative overall
and on the phenomenon of interest even when applied to ex-
treme examples of the phenomenon. We explore the reasons
for these performance improvements in Earnest et al. (2024).
We also saw performance improvement from both models as
the size of the neighborhood increased from 40 to 120 km,
with 120 km offering the best performance.

From the comparison of the All Fires model to the Large
Lightning model, we observed the value of including more fire
occurrence labels rather than less and will carry this learning
into our future work. Our future work will focus on refining the
predictions made by the All Fires model so they produce a pre-
diction with the performance of the All Fires model and the lo-
calization of the Large Lightning model. We will explore two
methods for achieving this end. The first method will be to in-
clude phenomenon-specific variables to our All Fires model,
specifically lightning, dry thunderstorms, and population density
to boost the signal for specific cases of interest. The second
method will be to explore the impact of optimizing the All Fires
model to both All Fires labels and Large Lightning labels.

From our exploration of different methods for codifying
model inputs, we learned the value of retaining the entire var-
iable distribution and will carry this learning forward into our

future work as well. From our inability to quantify variable
importance in the context of model input variables, described
in detail in Earnest et al. (2024), we found that multicollinear-
ity between input variables was a vulnerability of our current
input dataset. To address this limitation, we will explore data-
sets and variables with less correlation in our future work.
Datasets we plan to explore are LANDFIRE (LF), which in-
cludes vegetation and fuel national geospatial data, and ob-
served and forecast weather data from the Global Ensemble
Forecast System (GEFS).
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APPENDIX A

Appendix Title

Figure A1 and Tables A1–A4 describe which input varia-
bles we used, how our cross validation was done, and how
our UNet31 and loss function were configured.

FIG. A1. Grouped k-fold cross validation.
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TABLE A1. gridMET input variables.

Variable Description

Latitude Latitude of centroid of grid cell
Longitude Longitude of centroid of gridcell latitude
Day of year Julian day of inputs
Dead fuel moisture 100 h Moisture content of dead organic fuels}1–3-in. diameter class
Dead fuel moisture 1000 h Moisture content of dead organic fuels}3–6-in. diameter class
Burning index The contribution of fire behavior to the effort of containing a fire
ERC National Fire Danger Rating System index related to how hot a fire could burn
Elevation Height above sea level
Palmer drought severity index

(and associated category)
Estimate of relative soil moisture conditions

Wind speed Wind velocity at 10 m
Wind from direction Wind direction
Precipitation amount The amount of rain, snow, hail, etc., that has fallen at a given place within a given period
Specific humidity The weight of water vapor contained in a unit weight of air
Relative humidity (minimum) The amount of atmospheric moisture present relative to the amount that would be present

if the air were saturated
Surface downwelling shortwave flux

in air
The sum of direct and diffuse solar radiation incident on the surface

Mean vapor pressure deficit The difference between the amount of moisture in the air and how much moisture the air
can hold

Potential evapotranspiration (daily) The combined loss of water through the plant’s process of transpiration via its vascular
system and evaporation of water from Earth’s surface

TABLE A2. U-Net 31 model configuration details.

Argument Setting

filter_num_down [32, 64, 128, 256, 512]
num_classes 1
stack_num_down 4
stack_num_up 4
filter_num_skip auto
filter_num_aggregate auto
activation ReLU
output_activation Sigmoid
batch_norm TRUE
pool TRUE
unpool TRUE
weights imagenet
deep_supervision TRUE

TABLE A3. Adam optimizer configuration details.

Argument Setting

learning_rate 0.0001
beta_1 0.9
beta_2 0.999
epsilon None
decay 0
amsgrad FALSE

TABLE A4. FSS loss function configuration details.

Argument Setting

fss_c 1
fss_mask_size 3
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APPENDIX B

Appendix Title

Figures B1–B4 describe the individual model perfor-
mance plots, one for each day, for each model, and the in-
dividual model reliability plots, again, one for each day, for
each model. Figures B5–B6 summarize model performance
by region and season.

FIG. B1. Performance plots for days 0–10 for
the All Fires model.
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FIG. B2. Performance plots for days 0–10
for the Large Lightning model.
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FIG. B3. Reliability plots for days 0–10
for the All Fires model.
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FIG. B4. Reliability plots for days 0–10
for the Large Lightning model.
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FIG. B5. Average and error max CSI by region (aggregated across day
dimension).
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FIG. B6. Average and error max CSI by season (aggregated across day dimension).
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