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ABSTRACT: This paper illustrates the lessons learned as we applied the U-Net31 deep learning model to the task of building
an operational model for predicting wildfire occurrence for the contiguous United States (CONUS) in the 1–10-day range.
Through the lens of model performance, we explore the reasons for performance improvements made possible by the model.
Lessons include the importance of labeling, the impact of information loss in input variables, and the role of operational consid-
erations in the modeling process. This work offers lessons learned for other interdisciplinary researchers working at the intersec-
tion of deep learning and fire occurrence prediction with an eye toward operationalization.
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1. Introduction

In Part I of this work, Earnest et al. (2024), we developed
and analyzed a U-Net31 deep learning model for the task of
fire occurrence prediction in CONUS in the 1–10-day range.
We developed two models, the “All Fires” model which pre-
dicted the probability of fire of any size and any cause and the
“Large Lightning” model which only predicted the probabil-
ity of lightning-caused fires greater than or equal to 1000 acres
in final fire size. We demonstrated that the All Fires model
performed better than the Large Lightning model in general,
on large lightning fires in specific, and on the largest of large
lightning fires for the test dataset. In Part II of this work, we
explore the reasons why the All Fires model outperformed
the Large Lightning model and offer lessons learned that may
be useful to other interdisciplinary researchers, specifically for
those developing machine learning applications for wildfire
prediction.

2. Lessons learned

In the following section, we discuss decisions made during the
modeling process that either improved or limited model perfor-
mance. In section 2a, where we explore model performance im-
provements, we discuss why the models performed the way
they did even in the absence of lighting inputs. In section 2b,
where we explore choices that limited the model in some way,
we discuss how variable selection and codification can limit

model performance or remove the model’s ability to offer cer-
tain insights all together.

a. Where is the lightning?

One critical point worth drawing out is that neither the All
Fires model nor the Large Lightning model had lightning obser-
vations as an input. This seems to be a condemning omission for
how can lightning fires be predicted without the model having
knowledge of lightning? Exploring this question will help illus-
trate why performance differed between the All Fires model
and the Large Lightning model.

1) LESSON 1: HIGHER LABEL DENSITY LEADS TO

BETTER PERFORMANCE

The first lesson we took away from Part I is that more labels
lead to better performance. This is a different lesson than the
commonly known “more data leads to more performance”
because both models were given the same amount of data
(same domain in time, space, and input variables). Where the
models differed is in the number of instances of fire occur-
rence depicted in the label images used to train the models
and to measure model performance. Since the All Fires model
included fires regardless of size or cause, more instances of
fire occurrence were available for the label images offered to
the model as depicted in Table 1. This provided the All Fires
model with more opportunities to identify meaningful pat-
terns between the inputs and the labels which may have al-
lowed it to be more performative. The All Fires model was
able to issue fire probability predictions both where large
lightning fires were discovered and where other causes and
sizes of fires were discovered resulting in better extrapolation
when applied to the test dataset.
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Examples of this relationship can be seen in Fig. 1, where a
gap in performance can be observed between the All Fires
model and all other models attempted, each of which sought
to constrain the cause or size of the fire occurrence instances
included in the label images in some way. We validate in the
following section that this increase in performance does not
come at the expense of maintaining high performance on spe-
cific cases of interest, e.g., large lightning fires.

2) LESSON 2: START WITH THE GENERAL CASE AND

THEN GO SPECIFIC, NOT THE OTHER WAY AROUND

We framed the task of predicting large lightning fires into
the following three components:

Component 1: A cloud-to-ground (CG) lightning flash must
meet the criteria necessary to start a fire: it must contact the
ground, it must connect with something combustible, and it
must have high enough amperage and low enough voltage
to convert electrical charge to combustion (Pyne 2001).

Component 2: Fire mitigating weather (such as frequent,
heavy rains) must not be present as it hinders the ignition
and spread of fire.

Component 3: CG lightning must occur in an area that is al-
ready primed for fire.

We can see from the framing presented that the scope of
each component builds on the scope of the previous compo-
nent. Component 1 deals only with the ignition source.
Component 2 deals with the means of mitigation for the phe-
nomenon of interest. Component 3 deals with the larger envi-
ronmental factors which can contribute to making an area
suitable for the phenomenon of interest. It is tempting to fo-
cus first on those components that apply only to large light-
ning fire, components 1 and 2, so as not to dilute the signal
received by the model. This is a lesson carried over from nu-
merical weather prediction practices common in the weather
and fire weather spaces. It does not necessarily apply when us-
ing a deep learning model.

Instead, as we demonstrate in Part I (Earnest et al. 2024),
by taking the opposite approach, and starting with the most
general component, component 3, we were able to build a
performative model (the All Fires model), both in general
and on the specific case of interest, large lightning fires. This
performance stems from the All Fires model’s ability to

TABLE 1. Fire occurrence label counts by season for the All Fires model and Large Lightning model.

Cross-validation rotation 1 Season All fires label count Large lightning fires label count

Train (2000–14) Fall 216 440 269
Spring 412 083 268
Summer 402 630 3024
Winter 202 069 9

Validation (2015–17) Fall 49 953 51
Spring 75 108 46
Summer 76 064 656
Winter 38 594 0

Test (2018–20) Fall 38 776 41
Spring 75 574 41
Summer 76 821 489
Winter 24 974 2

FIG. 1. Max CSI by model.
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predict where fires, any fires, are likely to be discovered in
CONUS, or, said differently, which areas of CONUS are
primed for fire. In contrast, the Large Lightning model pre-
dicts only where large lightning fires are likely to be discov-
ered in CONUS, which provides a much narrower view into
potential future fire behavior. Predicting where fires are possi-
ble, the goal of the All Fires model, as opposed to where large
lightning fires are possible, the limitation of the Large Light-
ning model, is a key prospective shift necessary in building a
model that generalizes well and has some measure of future
proofing. After all, where large lightning fires have happened
in the past does not dictate, exclusively, where large lightning
fires, or indeed, all fires, will happen in the future.

Once a working understanding has been developed, an in-
terdisciplinary researcher must keep in mind not only what
methods have been used to address this challenge in the past
but how those methods differ from deep learning so as to of-
fer the most value from a deep learning implementation for
the task at hand. In our work, that meant exploring a path
that ran counter to previous, transferable modeling knowl-
edge present in the weather and fire weather domain so as to
offer the most performative deep learning model for the task
of predicting wildfire occurrence.

b. There are inputs and then there are inputs

There are many ways to support the performance of a ma-
chine learning model. As discussed in the previous section,
one way focuses on the impacts of labeling and another on
how the modeler interprets the modeling space. Another way
to support model performance is by selecting the best inputs
for the predictions that the model will need to make. Part of
this task deals with variable selection, a topic touched on in
both this section and in the next section. Another piece of this
task, focused on in this section, deals with how the variables,
once selected, are codified (preprocessed or transformed) for
use by the model.

One example of how variables can be codified for the
model is the process of normalization. When using neural net-
works, it is important to normalize the model inputs because
it supports the model training process by shifting all inputs
into the same scale which helps stabilize gradient descent (the
method by which neural networks learn) which can result in
faster model convergence to an optimal solution. Said differ-
ently, the model gets as good as it is going to get as quickly as
possible. This is a helpful trait for models destined for opera-
tionalization. For this work, all inputs were normalized to val-
ues between zero and one.

1) LESSON 3: SUMMARY VARIABLES HAVE THEIR

PLACE, JUST NOT NECESSARILY IN A DEEP

LEARNING MODEL

At the confluence of variable selection and variable codifi-
cation is the question of summary variables. It is tempting in
interdisciplinary work to seek out summary variables carefully
created by the subject matter experts working in the space,
based on years of experience and rules of thumb. This
approach is not without merit and can speak to important

themes valuable to the modeling task, such as what variables
forecasters consider to be important. However, when machine
learning is not the currently used method, it is valuable to
keep in mind not only what has worked for forecasters but
also what will work for the machine learning model. In the
case of summary variables, such as climatology variables and
probabilities derived from climatology, the data components
that human forecasters rely on do not necessarily provide the
machine learning model with the complexity of data that it
needs to produce its highest quality prediction.

One early approach we tried in applying machine learning
to the task of fire occurrence prediction, informed by how
subject matter experts use climatologies today, was to use
quantized fuel variables, called the “Quantized Fuel” model
in Fig. 1. We broke weather-derived fuel variables (energy re-
lease component, burning index, and dead fuel moisture 100
and 1000 h) down into quantiles (0, 10, 25, 50, 75, 90, and 100)
and converted those quantiles into individual variables (e.g.,
one variable would be the 90th percentile burning index) and
submitted those variables to the model as inputs, much as one
would do when considering a climatology. The performance
of the Quantized Fuel model, when compared to other mod-
els we developed as our work matured, was relatively low.
Performance for all models is depicted in Fig. 1 in which
model performance is measured using critical success index
(CSI). CSI is a performance metric used to evaluate model
predictions within the National Weather Service (Schaefer
1990).

Referring to Fig. 1 and comparing model performance for
only models that used similar inputs and labeling strategies,
the “Fuel Only” model outperformed the Quantized Fuel
model. Both models used the same input variables from the
same source [burning index, energy release component, and
dead fuel moisture sourced from gridded surface meteorologi-
cal (gridMET) dataset]; the difference between the two mod-
els was that the Quantized Fuel model relied on summary
inputs (its input variables were converted to quantiles before
being normalized and offered to the model) while the Fuel
Only model relied on nonsummary inputs (its input variables
were only normalized before being offered to the model).

One interpretation for this difference in performance is
that the entire distribution, as described by the nonsummary
input variables, carried more information than the values
used to summarize the distribution, as described by the sum-
mary variables. The summary dependent model also took up
more storage space and was more computationally intensive
than the nonsummary dependent model as we added multiple
summary variables (each with the same coverage in time and
space but offering less information than the original variable)
in an attempt to compensate for the information lost in sum-
marization. This resulted in a large model which trained
slowly and performed relatively poorly, characteristics which
are less desirable for a model bound for operationalization.

The key take-away described by these results is that the use
of summary variables as model inputs when the model is capa-
ble of handling the nonsummary variables results in a model
starved for information. The appetite for summary variables
stems largely from how the human mind works, famously
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described by Tversky and Kahneman (1974) as heuristics, or
the shortcuts the human mind takes to make decisions in the
presence of uncertainty. A deep learning model needs no such
shortcut and is either biased or constrained by being provided
with one. An effective deep learning model can stand in for
previously necessary shortcuts, allowing decision-makers to
quickly connect the dots without having to sacrifice the
amount of information considered. This trait makes deep
learning a great candidate for decision support.

2) LESSON 4: MULTICOLLINEARITY AND VARIABLE

CONTRIBUTION

Multicollinearity describes a situation wherein the inputs to
a model are correlated with each other. While the presence of
multicollinearity does not necessarily produce a less perfor-
mative model, it does impact our ability to quantify the contri-
butions of the individual input variables for the model. When
multicollinearity is present, variable importance is difficult to
measure because it is unknown from which correlated vari-
able the effect on the model is produced. Possible solutions
for such a situation are 1) to remove all of the highly corre-
lated variables, retaining only the uncorrelated variables of
interest, or 2) to apply dimensionality reduction [principal

component analysis (PCA) being an example of such] to re-
duce the amount of correlation in the dataset while retaining
as much information as possible.

The datasets used for this work were recommended by sub-
ject matter experts because of their familiarity to fire weather
forecasters with the goal of lowering barriers to adoption for
the model. Between the input variables, sourced from grid-
MET, there is a lot of correlation, as depicted in Fig. 2. While
the rules defining which values of correlation correspond to
different correlation strengths vary by situation and discipline,
we have described our discretization in Fig. 2.

Our subject matter experts would like to receive informa-
tion regarding variable importance in the context of the input
variables used for the model and for those input variables to
be variables familiar to them. For example, energy release
component (ERC) is a popular variable used in fire weather
forecasting which describes the amount of available energy
[basic training unit (BTU)] per unit area (square foot) within
the flaming front at the head of a fire (U.S. Department of
Agriculture 2023). Fire weather forecasters would like to
know how important ERC is to making an accurate fire
weather forecast. With the All Fires model, perhaps, we have
a model offering enough accuracy for the discussion to shift to
variable importance.

FIG. 2. Correlation plot of gridMET variables.
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Referring to Fig. 2, all but two input variables exhibit a posi-
tive correlation with ERC. It is important to understand that
ERC is calculated using burning index and 1000-h fuel moisture,
which is in turn calculated using temperature, relative humidity,
and precipitation (National Interagency Fire Center 2023). This
is called structural multicollinearity, wherein correlation be-
tween variables results from using one model term to create an-
other model term, resulting in more variables for the model but
not necessarily more information for the model.

Option 1, that of removing variables highly correlated with
the variable of interest, is likely not at our disposal unless we
are willing to lose the majority of our input variables. Option 2,
that of applying dimensionality reduction to the input variable
set, as in the use of PCA, would allow us to quantify variable
importance but only in terms of new, linearly uncorrelated vari-
ables, called principal components. The resulting principal com-
ponent variables would no longer be of a format recognized by
the fire weather forecasters and would lack context save that of-
fered by the model itself.

In summation, neither option 1 nor option 2 offers the abil-
ity to quantify variable importance within the context of rec-
ognizable variable inputs using the datasets recommended for
this work as familiar to fire weather forecasters. As variable
importance is a valuable tool for supporting model under-
standing, trust, and, ultimately, adoption, this creates a vul-
nerability for a model bound for operationalization.

3. Conclusions

From our work predicting fire occurrence using machine
learning, we learned many lessons. In section 2a, we discussed
two lessons learned that helped improve our model perfor-
mance. First, even for rare events, increased label density can
increase performance both on the general case of fire and on
the specific case of large lightning fire. Second, by tackling the
most general aspects of the problem space first, you can set
the stage for a performative model that generalizes well both
to previously unseen future data and to unexpected cases
within the data (such as large lightning fires where you would
not expect them to be). In section 2b, we discussed two les-
sons learned that limited our model in some way. First, we
discussed the impact summary variables have on model per-
formance when used as inputs. Though summary variables,
such as climatologies and probabilities derived from climatol-
ogies, are an important tool in fire weather forecasting, when
climatology equivalent variables were introduced as model in-
puts, model performance decreased. Second, we discussed the
impact that multicollinearity among inputs has on the model’s
ability to provide desired insights which can be valuable to

model understanding and adoption. When multicollinearity is
present, it is difficult to isolate variable contribution to model
behavior and as variable contribution is a valuable insight for
fire weather forecasters to have, the presence of multicolli-
nearity represents a vulnerability for a model designed for
operationalization.
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