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1. INTRODUCTION 

As the United States transitions to a Unified 

Forecasting System (UFS), evaluating the resultant 

forecasts is crucial to ensuring that the new 

iterations of experimental forecasts improve upon 

the operational models. One venue for evaluating 

the forecasts specifically for severe convective 

weather is NOAA’s Hazardous Weather Testbed 

(HWT) Spring Forecasting Experiment (SFE; Gallo 

et al. 2017, Clark et al. 2022a). During the 5-week 

annual SFE, participants conduct multiple 

forecasting and evaluation activities during the 

peak of the spring convective season. Evaluation 

activities center on new convection-allowing model 

(CAM) guidance, post-processing methods, 

analysis techniques, and calibrated guidance. 

During the 2022 SFE, owing to the many 

experimental CAMs, ensembles, and products 

provided, four different evaluation groups focused 

on calibrated guidance, deterministic CAMs, CAM 

ensembles, and a medley of other guidance. 

Each evaluation group conducted next-day 

subjective evaluations for their assigned product 

suite. Subjective evaluations have long been used 

in SFEs (Kain et al. 2003; Clark et al. 2012; Gallo 

et al. 2016; Miller et al. 2021) to assess the 

performance of experimental guidance and the 

impact of different configuration strategies. 
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Subjective evaluations provide useful feedback for 

aspects of model guidance that may be challenging 

to illustrate with bulk statistics, such as storm 

characteristics like convective mode, convective 

storm size, or storm evolution. Subjective 

evaluations also help to provide feedback on the 

guidance as it would be used by forecasters; while 

bulk statistical metrics may tell forecasters how the 

model performs in aggregate over many cases, it 

doesn’t always illustrate what those biases will look 

like in terms of the sensible weather or how a model 

is used in practice. 

This work examines two of the deterministic model 

comparisons undertaken in SFE 2022. The first 

comparison, involving state-of-the-art model 

guidance from many different agencies, is typically 

performed in some form during the SFE each year. 

Please see Clark et al. (2022b) for full details on 

model configurations. The second evaluation dives 

more deeply into the operational CAM system (the 

High-Resolution Rapid Refresh forecast system or 

HRRRv4; Dowell et al. 2022, James et al. 2022) 

and its potential candidate for replacement (the 

Rapid Refresh Forecast System Prototype 2 

Control member or RRFSp2 Control). The 

techniques used to evaluate these models 

subjectively will be described below, followed by the 

results of the subjective evaluation. The next 

section will detail objective evaluation done after 
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the conclusion of the 2022 SFE to supplement the 

subjective verification results, and the final section 

will discuss conclusions and recommendations for 

the 2023 SFE subjective evaluation strategies.  

2. METHODS 

2.1 Subjective Evaluation: Deterministic Flagships 

For this evaluation, participants considered a 6-

panel figure with five cutting-edge model 

configurations contributed by different agencies. 

Those models were the HRRRv4, the RRFSp1, the 

RRFSp2 Control, the NSSL-FV3, and the GFDL-

FV3. These model configurations differed in 

dynamical core, parameterization schemes, data 

assimilation strategies, and whether the models 

were a global-nested or stand-alone regional 

configuration. Essentially, the purpose of this 

evaluation was to determine if any individual 

configuration of the experimental models could 

approach or exceed the skill of the currently 

operational model (the HRRRv4).  

Participants evaluated storm-attribute fields and 

environmental fields. Participants were asked to 

consider forecast hours 13–36 in their evaluations, 

corresponding with 1200–1200 UTC. Storm 

attribute fields included 2–5 km updraft helicity (UH) 

and composite reflectivity (Fig. 1), which was 

verified with observed reflectivity from MRMS and 

overlaid preliminary local storm reports (LSRs). 

Preliminary LSRs were used due to their low 

latency for a next-day evaluation activity. Each 

participant was also randomly assigned to evaluate 

one of the following environmental fields: 2-m 

temperature, 2-m dewpoint, or surface-based 

convective available potential energy (SBCAPE), 

all of which were verified using 3D-RTMA data (i.e., 

the HRRR-based version).  

For each of the above fields, participants were 

asked to rank the models from the best-performing 

(1) to the worst-performing (5) model. They then 

could provide a 1-10 rating of only the best-

performing model, to allow facilitators to determine 

whether a model was “the best of the worst”, or truly 

performing well in a case. While the evaluations 

were taking place, the models were blinded, 

meaning that participants did not know which model 

was which. Panels were also shuffled day-to-day, 

so that participants who were in the same group 

multiple days in a row would not know which model 

Figure 1. An example of what participants saw during the Deterministic Flagship comparison. Simulated reflectivity and 2–5 km 
updraft helicity exceeding the 95th percentile of model climatology from five contributed models are in the top row and the left 
two panels in the bottom row, while observed reflectivity is in the lower right panel. Local storm reports from the past hour are 
overlaid as green dots (hail), black dots (significant hail) and red inverted triangles (tornado). 



was which depending on its position in the 6-panel 

figure (Fig. 1). After the surveys were submitted, the 

models were unblinded during a discussion activity, 

so that participants, including operational 

participants who may be using these models in a 

few years to issue forecasts, were able to examine 

specific model performance. Alongside their 

rankings, participants were also asked to provide 

what aspects of convection they were examining in 

determining their rankings in an open-ended text 

box. 

The blinding and shuffling of panels was received 

well by participants, and these efforts will likely be 

repeated in future SFEs. However, shifting from a 

rating system wherein participants assign a 

numerical rating from 1–10 to a ranking system will 

likely not persist into future SFEs. While ranking is 

a useful practice given the difference between 

participant interpretation of numerical value (e.g., a 

“7” may not mean the same thing to all participants), 

ranking is optimally useful only when all available 

data is present. Given the experimental nature of 

the models contributed to the annual SFEs, data 

gaps throughout the experiment are nearly 

inevitable. For example, during SFE 2022 we had 

12 cases out of 19 that met the criterion of having 

all models available, with 92 responses from 

participants, restricting our cases examined herein 

to a subset of the 5-week experiment.  

2.2 Subjective Evaluation: HRRRv4 vs. RRFS 

The second evaluation of deterministic CAMs 

focused more specifically on the HRRRv4 vs. the 

RRFSp2 Control, which was configured to 

resemble the HRRRv4 as closely as possible at this 

stage of development. Participants were first asked 

to provide input to at least two of the following five 

storm attribute fields: Composite reflectivity and 2–

5 km UH, updraft speed, 10-m wind speed, 10-m 

wind gusts, and 0–3 km UH. For these fields, 

participants were asked which model performed 

better, with an option to select “models performed 

about the same”. Participants were asked the same 

question about one of either 2-m temperature, 2-m 

dewpoint, or SBCAPE. Finally, participants were 

asked to comment on model differences between 

two out of five additional environmental fields (850 

mb heights/winds, 700 mb heights/winds, 500 mb 

heights/winds, MLCAPE, and MUCAPE), which 

were randomly assigned. These additional 

environmental fields did not have verification data 

available, so participants were asked only to 

comment on differences between the fields. 

Unlike the prior comparison, this evaluation was 

unblinded, so participants were able to see which 

model was the HRRRv4 and which was the 

RRFSp2 Control member while they were filling out 

their survey. 

2.3 Objective Evaluation: HRRRv4 vs. RRFS 

To supplement the prior subjective evaluation, 

objective verification was performed on the 

HRRRv4 and the RRFSp2 Control member after 

the 2022 SFE concluded. This evaluation 

encompassed 20 cases in which data was available 

for both models. For this analysis, surrogate severe 

fields were created by regridding the model data 

and reports to the NCEP 211 grid (80 km). 

Surrogate severe fields were created by running a 

Gaussian smoother with varying sigma over fields 

where UH exceeded a specific percentile threshold. 

Fields were created using 100 UH percentile 

thresholds ranging from the 70th to the 99.7th 

percentiles and 53 Gaussian smoothers with sigma 

ranging from 40 km to 300 km. These fields were 

verified using binary regridded report data. Metrics 

examined were the area under the Receiver 

Operating Curve (ROC area; Mason 1982) and the 

Fractions Skill Score (FSS; Roberts and Lean 

2008). 

3. RESULTS 

3.1 Subjective Evaluation: Deterministic Flagships 

Rankings for the reflectivity and UH show two 

groupings of model performance (Fig. 2). The 

HRRRv4, RRFSp1, and RRFSp2 Control were 

ranked relatively similarly with regards to the mean 

ranking, followed by the NSSL FV3-LAM, and then 

the GFDL FV3. The HRRRv4 was most frequently 

ranked first, followed by the RRFSp1 and the 

RRFSp2 Control. The RRFS models were most 

frequently rated second or third, leading the 

RRFSp1 to a slightly higher overall mean ranking 

than the HRRRv4, though these differences are 

likely not significant. The NSSL FV3-LAM was most 

frequently rated fourth or fifth, and the GFDL FV3 

was most frequently rated last. When asked what 

characteristics of the simulated reflectivity and UH 

forecasts were most important to the participants 

when ranking the models, participants broadly cited 

forecasting challenges such as the convective 



initiation, progression of storms, location of storms, 

intensity of storms. In a word cloud of participant 

responses, timing, location, and storm mode 

showed up frequently. Convective coverage also 

came up in some participant responses. 

Rankings for the environmental fields followed 

similar patterns to the reflectivity and UH rankings, 

although the HRRRv4 easily received the highest 

mean ranking in temperature and SBCAPE (Fig. 

3a,c). The HRRRv4 was most frequently rated the 

highest of all of the models considered in those 

fields, while the RRFSp2 Control was most 

frequently ranked first for dewpoint (Fig. 3b). 

Overall, the pattern of the HRRRv4, RRFSp1, and 

RRFSp2 Control ranking the best continued for all 

environmental fields considered, followed by the 

GFDL FV3 and the NSSL FV3-LAM. The GFDL 

FV3 placed fourth in terms of highest ranking for 

temperature, but was most frequently rated last for 

dewpoint and SBCAPE. For temperature, the NSSL 

FV3-LAM was most frequently ranked last.  When 

evaluating the 2-m temperature, participants looked 

more closely at boundaries, gradients, and 

mesoscale areas of bias in making their rankings. 

Cold pools were also considered. Similar 

considerations applied for the 2-m dewpoint and the 

SBCAPE, although the shape and orientation of 

boundaries were specifically cited with regards to 

any drylines that may have been in the SFE domain 

of interest. Horizontal distribution of large areas of 

SBCAPE (e.g., warm sectors) also played a role for 

some participants assigned the SBCAPE field. 

Ratings results (not shown) confirm that the best 

performing model was frequently rated similarly 

Figure 2. Reflectivity and UH rankings for models in the 
Deterministic Flagship comparison. Dashed lines indicate 
the mean ranking (lower numbers are better). 

Figure 3. Rankings of environment for the Deterministic Flagship 
models. Rankings were completed for (a) 2-m Temperature, (b), 2-
m Dewpoint, and (c) SBCAPE. Dashed lines indicate the mean 
ranking for the model in question (lower numbers ares better), and 
the dashed blue lines in (a) indicate that the RRFSp1 and the 
RRFSp2 Control had the same mean ranking. Note that the y-axis 
on these comparisons are scaled to each individual subplot. 



between cases and participants for both the storm-

attribute fields and the environmental fields, with 

median ratings around 7 or 8 out of 10 in most 

cases. Since the environmental fields have quite 

small sample sizes, strong conclusions cannot be 

drawn from them. However, looking at the 

distributions of the HRRRv4, RRFSp1, and 

RRFSp2 Control members in the reflectivity and UH 

ratings show very similar distributions, indicating 

very similar performance across models that on 

days where this set of models are performing their 

best. 

2.2 Subjective Evaluation: HRRRv4 vs. RRFS 

Participants most frequently selected the 

reflectivity/2–5 km UH and 10-m wind speed to 

evaluate, although the updraft speed was a close 

third (Fig. 4). The 10-m wind gusts, although only 

evaluated fourth most often, were frequently a topic 

of discussion after completion of the survey. Storm- 

attribute field performance varied regarding which 

model was selected as the best performer (Fig. 5). 

For simulated reflectivity and updraft speed, the 

HRRRv4 was selected as the better-performing 

model more frequently than the RRFSp2 Control. 

However, the 10-m wind speeds and the 0–3 km 

UH were frequently better in the RRFSp2 Control 

relative to the HRRRv4. The 10-m wind gust 

performance was similar across all categories. 

When commenting on the 2–5 km UH and 

simulated reflectivity, participants frequently noted 

different performance at different time periods, as 

exemplified by comments such as: “HRRR did 

better first half of the period by far, but RRFS did 

better with the bigger event, derecho later in 

Figure 4. Number of times each storm attribute field was selected 
for evaluation. Note: 0-3 km UH was unavailable for the first few 
weeks of SFE 2022. 

Figure 5. Answers to the question, “Which model performed best for this field?”, in which participants were 
asked to select at least two of the five fields presented to evaluate. 



period”. Comments such as these highlight the 

necessity of objective verification across the entire 

convective day, which is time-prohibitive to do 

subjectively in the context of the SFE. Participants 

frequently commented that the 10-m wind speed 

was too low, particularly in the HRRRv4. The 10-m 

wind gust product, which is not constrained by 

having to meet a reflectivity criteria, was noted by 

the participants to show swaths of strong wind 

gusts in the RRFSp2 Control that appeared to be 

synoptically driven rather than associated with 

convection. However, during one discussion 

session, a WFO forecaster mentioned that it 

wouldn’t necessarily be bad for the model to show 

high synoptic gusts, as they currently faced a 

forecast challenge in getting good guidance for 

gusty winds that were not associated with 

convection. 

Participants next evaluated a randomly selected 

environmental field. Fields were evenly assigned 

between 2-m temperature, 2-m dewpoint, and 

SBCAPE. For temperature and CAPE, the most 

frequent response from participants was that the 

HRRRv4 and the RRFSp2 Control performed about 

the same (Fig. 6). For dewpoint, however, the 

RRFSp2 Control being better was the most 

frequent response. Overall, the HRRRv4 appears 

to perform better with regards to the 2-m 

temperature and the SBCAPE, but the RRFSp2 

Control forecasts the 2-m dewpoints better than the 

HRRRv4. Participant comments surrounding the 

temperature spoke to the placement and intensity 

of boundaries and cold pools, and some 

participants focused in on the reasoning why 

specific biases may be preferred: “The RRFSp2 

appeared slightly closer to true values but given it 

was cool biased compared to HRRRv4 warm bias, 

I preferred the warmer solution given the impacts of 

the day may be made more significant with a 

warmer boundary layer.” Participants frequently 

commented on a dry bias in the HRRRv4’s 2-m 

dewpoints, and the comments surrounding the 

CAPE showed no clear trends. 

Finally, participants were asked to evaluate fields 

that were new to formal subjective evaluation, and 

were asked to comment on differences between 

three of the following fields that were randomly 

assigned: 500 mb height/wind, 700 mb height/wind, 

850 mb height/wind, MUCAPE, and MLCAPE. 

Comments on the 500 mb fields were frequently 

that the models were similar, but for some cases 

participants were able to highlight details of the 

evolution of the upper-air fields. One such example 

reads, “HRRRv4 had a weaker trough with the main 

core of winds mainly centered over AMA. RRFSp2 

has a stronger trough with a wind core extending 

south of Lubbock. This also might explain the 

resulting differences in convective products.” Case-

based analysis of these upper-air CAM fields can 

help developers identify systematic differences that 

may be linked to sensible weather. At 700 mb, 

participants frequently noted that the RRFSp2 

Control had stronger winds than the HRRRv4. This 

comment was less frequent at 850 mb relative to 

700 mb, but participants also noticed more small-

scale perturbations in the 850 mb height lines in the 

RRFSp2 Control. MUCAPE magnitudes were a 

mixed bag, although the spatial extent was not as 

widespread in the RRFS according to some 

participants. MLCAPE, however, almost always 

was noted to be higher in the HRRRv4 relative to 

the RRFSp2 Control. This impression was 

conveyed by participants commenting on not only 

higher maximum values, but also broader areal 

coverage of large CAPE. 

2.3 Objective Evaluation: HRRRv4 vs. RRFS 

When looking at the HRRRv4 and RRFSp2 Control 

members objectively via the surrogate severe fields 

(Fig. 7), maximum scores among all smoothing and 

percentile thresholds are similar. For the ROC area, 

the maximum score achieved by the HRRRv4 is 

only 0.012 higher than the maximum score of the 

RRFSp2 Control. Similarly, for the FSS the 

difference is only 0.0193 between the two models. 

However, it should be noted that the HRRRv4 also 

Figure 6. As in Fig. 5, but with environmental fields that were 
randomly assigned. 



has a broader area of high performance relative to 

the RRFSp2 Control, showing that it can provide 

skillful forecasts for a range of surrogate severe 

fields and may not be as sensitive to the 

specifications of the surrogate severe formulation. 

The FSS of the RRFSp2 Control is maximized at a 

slightly lower percentile threshold than the 

HRRRv4, but the ROC area is maximized at a 

higher percentile threshold. Smoothing levels 

maximizing skill are similar for the FSS, but the 

HRRRv4 optimizes ROC area at a smaller 

smoothing radius than the RRFSp2 Control. 

The main takeaway here is that the objective skill of 

the experimental RRFSp2 Control member is 

approaching the skill of the HRRRv4, similar to 

what was seen in the subjective evaluations. Since 

SFEs in prior years that tested FV3-based CAM 

configurations have not shown those configurations 

to possess a similar level of skill, these results 

should be encouraging to the UFS community and 

the model developers who have spent many years 

working to improve these forecasts. 

4. CONCLUSIONS AND KEY TAKEAWAYS 

During the 2022 SFE, subjective verification took 

place for several deterministic and ensemble 

comparisons. For a description of all preliminary 

results for SFE 2022, please see Clark et al. 

(2022a). This work examined two subjective 

evaluations focused on deterministic guidance, 

specifically the cutting-edge deterministic guidance 

contributed by many different agencies to the SFE 

that are candidates to replace the operational 

deterministic CAM configuration. The primary 

takeaways are as follows: 

(1) For the first time, the subjective and 

objective skill of the RRFS prototypes is 

Figure 7. Objective verification of surrogate severe fields generated using the HRRRv4 and the RRFSp2 Control. Maximum scores 
are indicated with white squares, and the maximum score is annotated in white. 



approaching the HRRRv4 baseline for 

severe convective storms forecasting. 

(2) Remaining areas for targeted improvement 

include mitigating a low SBCAPE bias in 

the RRFS. 

(3) Data assimilation in the HRRRv4, RRFSp1, 

and RRFSp2 Control improve forecasts 

drastically relative to the cold-start NSSL 

FV3-LAM and the GFDL-FV3. 

(4) Potentially impactful differences between 

the HRRRv4 and the RRFSp2 Control were 

seen in fields like surface wind gusts and 

upper-air winds, motivating their objective 

verification prior to implementation or 

retirement. 

For SFE 2023, we anticipate maintaining blinded 

model evaluations, although it is likely that we will 

return to rating models rather than ranking them. 

For the ratings, however, we will likely iterate from 

a 1–10 rating system to a Likert scale to provide 

more distinction between rating categories. We look 

forward to the next iteration of experimental CAMs 

to be evaluated in the SFE, and continued 

research-to-operations, operations-to-research 

efforts surrounding severe convective storms. 
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