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ABSTRACT: Verification methods for convection-allowing models (CAMs) should consider the finescale spatial and tem-

poral detail provided byCAMs, and including both neighborhood andobject-basedmethods can account for displaced features

that may still provide useful information. This work explores both contingency table–based verification techniques and object-

based verification techniques as they relate to forecasts of severe convection. Two key fields in severe weather forecasting are

investigated: updraft helicity (UH) and simulated composite reflectivity. UH is used to generate severe weather probabilities

called surrogate severe fields, which have two tunable parameters: the UH threshold and the smoothing level. Probabilities

computed using the UH threshold and smoothing level that give the best area under the receiver operating curve result in very

high probabilities, while optimizing the parameters based on the Brier score reliability component results in much lower

probabilities. Subjective ratings from participants in the 2018 NOAA Hazardous Weather Testbed Spring Forecasting

Experiment (SFE) provide a complementary evaluation source. This work compares the verification methodologies in the

context of three CAMs using the Finite-Volume Cubed-Sphere Dynamical Core (FV3), which will be the foundation of the

U.S. Unified Forecast System (UFS). Three agencies ran FV3-based CAMs during the five-week 2018 SFE. These FV3-based

CAMs are verified alongside a current operational CAM, the High-Resolution Rapid Refresh version 3 (HRRRv3). The

HRRR is planned to eventually use the FV3 dynamical core as part of the UFS; as such evaluations relative to current HRRR

configurations are imperative to maintaining high forecast quality and informing future implementation decisions.

SIGNIFICANCE STATEMENT: The United States is currently working toward unifying its numerical modeling ef-

forts around a single dynamical core, or set of equations that serves as themodel framework.We compared threemodels

built around this new dynamical core to the current operational model, focusing on forecasts of severe convection. We

also explored different verification techniques, to look atmodel performance frommany angles. Amajor point discussed

in this work is that subjective choices (i.e., techniques, thresholds, fields, etc. used) still play a role in objective verifi-

cation. While we found that the experimental models are not yet depicting severe weather as well as the operational

model according to traditional verification techniques and metrics, there may be improvements captured by newer

verification techniques.

KEYWORDS: Mesoscale forecasting; Numerical weather prediction/forecasting; Operational forecasting; Model com-

parison; Model evaluation/performance

1. Introduction

Convection-allowing models (CAMs) are becoming more

widely available and play an increasingly important role in

the forecast process, particularly since the operationalization

of the High-Resolution Rapid Refresh (HRRR; Benjamin

et al. 2016; Alexander et al. 2017) model in 2014 and the High

Resolution Ensemble Forecast system in November of 2017

(HREF; Roberts et al. 2019). CAMs can be particularly helpful

in forecasting severe convective weather, since the small grid

spacing (;3 km) allows for simulation of storm-scale structures

such as supercells (Kain et al. 2006). As convectivemode plays a

key role in determining the convective hazard type (e.g., a linear

convective mode is more likely to produce severe winds than

severe hail; Smith et al. 2012), forecasters can use CAMs to

forecast threat types prior to convective initiation. Forecasters

determine expected convective mode by looking at the re-

flectivity structure of a storm, as well as whether or not the storm

is rotating. CAMs can simulate both of these characteristics, withCorresponding author: Burkely T. Gallo, burkely.twiest@noaa.gov
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the latter typically represented as updraft helicity (UH). UH is

an integral of the updraft speed and the vertical vorticity taken

over a specified vertical layer. Typically, CAMs output the

hourly maximum UH over the 2–5-km layer such that fore-

casters can determine whether a simulated midlevel mesocy-

clone is occurring; if the hourlymaximumfield shows a relatively

continuous swath of high UH values, the model is likely

producing a simulated supercell (Kain et al. 2010).

Verifying CAMs provides a unique set of challenges, and

this work attempts to provide a multifaceted verification ap-

proach to four different deterministic CAMs, three of which

are experimental configurations. The purpose of this work is

not only to compare and verify the performance of these spe-

cific CAMs during the spring convective season, but also to

demonstrate different verification techniques and what can be

gleaned from them. We hypothesize that each verification

metric will provide unique insight to the model performance,

and that if one model performs better than the others do across

all metrics tested herein, it is more likely to be perceived as

useful by forecasters.

CAMs often use postprocessing methods such as neighborhood-

based techniques, since gridpoint-based statistics that use the

contingency table may not reflect improvements evident in

object-based methods or subjective evaluation due to small-

scale displacements (see Schwartz and Sobash 2017 for a re-

view of neighborhood approaches as applied to CAMs).

These displacements result in double penalties, where a forecast

displaced from observations is penalized for both a false alarm

area and a missed area (Mass et al. 2002; Done et al. 2004).

While a forecast from a CAMmay not have a storm in the exact

right location, the convective mode information, timing, and

general location of convection still provide useful guidance to

forecasters, adding ‘‘value’’ as defined by Murphy (1993).

Neighborhood-based techniques look for a forecast feature of

interest within a spatial and/or temporal neighborhood, and if

the forecast event occurs within this neighborhood of the grid

point, it is considered a ‘‘hit’’ on the standard 2 3 2 contin-

gency table. Neighborhoods are also used in operational ap-

plications, as in the Storm Prediction Center (SPC) definition

of their forecast probabilities being the probability of severe

weather occurring within 25 mi of a given point.1

Besides neighborhood techniques, another form of CAM

verification specifically focuses on forecast objects produced by

the CAM. Object-based methods focus on characteristics such

as size, quantity, and orientation of the forecast and observed

objects (Davis et al. 2009;Wolff et al. 2014; Skinner et al. 2018).

The Method for Object-Based Diagnostic Evaluation (MODE;

Davis et al. 2006, 2009) is an object-based method of evaluation

that attempts to mimic the process of subjectively evaluating a

forecast field by assessing aspects such as object area and object

size. MODE has previously been applied to CAM forecasts of

precipitation accumulations (Davis et al. 2009; Gallus 2010;

Wolff et al. 2014; Clark et al. 2014), cloud objects (Griffin

et al. 2017), and a simulated vertically integrated liquid field

to evaluate forecasts of storm characteristics such as con-

vective mode, storm size, and number of storms (Cai and

Dumais 2015). Results from MODE can complement results

from traditional contingency table–based statistics and neigh-

borhood methods, providing insight into fields that operational

forecasters often consider.

In addition to leveraging verification metrics that account

for the unique characteristics of CAMs, CAM output can be

upscaled and smoothed via postprocessing techniques. One of

these techniques generates ‘‘surrogate severe’’ fields by

using a Gaussian kernel and UH exceedance thresholds to

create probabilistic forecasts of severe weather (Sobash et al.

2011). The probabilistic surrogate severe field can then be

compared to either binary yes/no reports or by applying a

similar approach to reports, using the ‘‘practically perfect’’

technique (Hitchens et al. 2013). The practically perfect

technique uses a Gaussian kernel to create smoothed probabi-

listic fields from local storm reports, showing what forecast a

forecaster would draw with perfect prior knowledge of where

the reports would occur. Taken together, the surrogate severe

technique and practically perfect technique create compara-

ble probabilistic forecast fields of a binary event: whether or

not severe weather will occur in an area (Sobash et al. 2011).

Surrogate severe forecasts can then be evaluated using

probabilistic metrics such as reliability alongside contingency

table analyses such as the area under the receiver operating

curve (ROC area; Mason 1982). These postprocessed surro-

gate severe fields also resemble operational forecasts, al-

lowing the forecaster to quickly assess the CAM output in

familiar terms.

UH and composite reflectivity are two of the critical se-

vere weather CAM output fields examined in annual Spring

Forecasting Experiments (SFEs; Clark et al. 2012; Gallo

et al. 2017) that take place at NOAA’s Hazardous Weather

Testbed (HWT). These experiments gather researchers and

forecasters from across the meteorological community to

provide feedback on cutting-edge CAM guidance and post-

processing in a real-time environment, where the participants

are issuing forecasts using experimental guidance. Participants

provide subjective feedback through ratings and comments, and

in-depth objective evaluation typically takes place postexperi-

ment (e.g.,Gallo et al. 2016; Surcel et al. 2017; Loken et al. 2019).

In recent years, experimental guidance evaluated by participants

has been organized into the Community Leveraged Unified

Ensemble (CLUE; Clark et al. 2018), a framework that coor-

dinates controlled experiments of CAM ensemble configura-

tions. While the original, 2016 CLUE was comprised solely of

members using the Advanced Research version of the Weather

Research andForecastingModel (ARW; Skamarock et al. 2008)

core, since 2017 members using the Finite-Volume Cubed-

Sphere Dynamical Core (FV3; Putman and Lin 2007) were

added to the CLUE and evaluated during the SFE. The two

FV3-based members run during the 2017 SFE performed much

differently than the ARWmembers (Potvin et al. 2019), and the

three FV3-based models available during the 2018 SFE and

examined herein sought to improve upon the 2017 performance.

The FV3 dynamical core is a key component of the effort in

the United States toward creating a unified forecast system1 https://www.spc.noaa.gov/misc/SPC_probotlk_info.html.
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(UFS in NOAA)2 across all scales. Since this effort encompasses

temporal scales ranging from minutes to seasons, and spatial

scales ranging from regional to global, many stakeholders will be

impacted by this endeavor and may require different types of

forecast metrics for their respective applications (Gallo et al.

2019). While some evaluation has been done of forecasts

using the FV3 dynamical core at large scales (see the GFS

Evaluation web page)3 work verifying specific attributes of

high-resolution, convection-allowing FV3-based models has

just begun. Comparisons of the precipitation forecasts be-

tween the legacy GFS and a global FV3-based model with a

high-resolution nest showed that the FV3-based model was

better able to capture the diurnal cycle of precipitation (Zhou

et al. 2019). In addition, comparisons focused on hurricane

forecasting showed that an FV3-based model performed

comparably to or better than current operational hurricane

models for track forecasting, and improved intensity forecasts

compared to the GFS (Hazelton et al. 2018). Two early

studies of precipitation forecasts during the warm season

across the contiguous United States (CONUS) show that

FV3-based models have skill comparable to WRF (Zhang

et al. 2019; Snook et al. 2019), with some sensitivities to mi-

crophysics parameterization scheme and little sensitivity to

the boundary layer parameterization scheme (Zhang et al.

2019). Harris et al. (2019) examine the performance of a high-

resolution nested FV3-based CAM using large-scale metrics

such as the 500-hPa anomaly correlation coefficient, but also

examine several case studies from the 2017 SFE period and

find that FV3-basedmodels can successfully generate realistic

convective mode outputs in simulated reflectivity, as well as

well-represented hourly maximum UH tracks. This work fo-

cuses on FV3-based CAMs as they pertain to forecasting

severe convection, based on metrics relevant for CAMs. For

comparison, the FV3-based CAMs are evaluated alongside

the version of the HRRR that was under development at the

time of the 2018 SFE and became operational in July 2018 (i.e.,

HRRRv3). We hypothesize that the FV3-based CAMs will

perform worse than the operational HRRRv3 in most metrics,

simply because they are earlier in the development cycle.

Section 2a of this paper will discuss the three FV3-based

CAMs examined during this experiment, as well as the

HRRRv3 specifications. Section 2b will discuss specifications

used in generating surrogate severe fields and selected for re-

flectivity values. Section 2c will cover the verification data and

the specifics of computing the contingency table–based and

object-based metrics evaluated. Model climatologies will be

discussed in section 3a, contingency table–based statistical

results will be in section 3b, and object-based statistical metrics

will compose section 3c. Section 3d describes the subjective

ratings given by participants during SFE 2018. A case from

SFE 2018 illustrates differences in the look of a daily surrogate

severe forecast depending on what metric is optimized in

section 3. Finally, section 4 will provide conclusions and di-

rections for future work.

2. Data and methodology

a. Model configurations

This study examines three CAMs that use the FV3 dynam-

ical core, as well as a CAM that uses the Advanced Research

version of WRF (WRF-ARW) dynamical core. All of these

models were run during the 2018 SFE, which occurred on week-

days from 30 April 2018 to 1 June 2018 (excluding Memorial

Day), resulting in 24 cases. The objective metrics were computed

for 21 cases where a complete dataset was present for all of the

models examined herein (Table 1).

All model configurations had horizontal grid spacing of

;3 km over a CONUS domain (Table 2). Each model was

initialized at 0000 UTC, and had forecasts extending to 36 h.

FV3-based configurations were cold start (i.e., no hydrome-

teors in the initial conditions). Conversely, the HRRRv3

(which became operational on 12 July 2018) uses gridpoint

statistical interpolation (GSI; Wu et al. 2002; Kleist et al. 2009)

hybrid data assimilation, including the latest 3D radar re-

flectivity. The HRRRv3 data assimilation includes conventional

observations, as well as Tropospheric Airborne Meteorological

Data Reporting (TAMDAR; Daniels et al. 2006) aircraft ob-

servations, and lightning flash rates (Benjamin et al. 2016). Initial

conditions come from theRapidRefresh (RAP;Alexander et al.

2017), and the lateral boundary conditions come from GFS

forecasts (GFSf).

In contrast to the regional HRRRv3, all FV3-based CAMs

examined in this work were globally run configurations with a

high-resolution nest, though the specifics of the coarse global

resolution grid differed somewhat between members. The

FV3-based member run by the Geophysical Fluid Dynamics

Laboratory, known from here on as the GFDL-FV3, used a

combination of grid nesting (Harris and Lin 2013) and stretching

(Harris et al. 2016) to transition a 13-km global grid to a 3-km

nested grid over the CONUS. The National Severe Storms

Laboratory (NSSL) FV3-based member, known as the NSSL-

FV3, used a 25-km global grid that was refined to a 3.3-km grid

over the CONUS. The third FV3-based member was provided

by theCenter for theAnalysis and Prediction of Storms (CAPS),

known as the CAPS-FV3 (Zhang et al. 2019), used an essentially

uniform 13-km global grid, within which an;3.5-km nested grid

covered the CONUS. While these grid configurations differ

slightly, we do not expect large differences due to horizontal grid

TABLE 1. A list of the SFE 2018 cases used in this study.

Week 1 Week 2 Week 3 Week 4 Week 5

30 Apr, 1, 2, 3, 4 May 7, 8, 10 May 15, 16, 17, 18 May 21, 22, 23, 24, 25 May 29, 30, 31 May, 1 Jun

2 https://ufscommunity.org/.
3 http://www.emc.ncep.noaa.gov/users/meg/fv3gfs/.
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spacing as they are all between 3 and 3.5 km. Different micro-

physics and planetary boundary layer parameterization schemes,

aswell as land surfacemodels, were also used in the different FV3-

based models (Table 2), since each agency tested a different

strategy for creating the best FV3-based CAM. Regarding the

microphysics schemes, which are particularly relevant given this

work’s focus on convection, the 6-category GFDL scheme

(GFDL-6cat; Chen andLin 2013; Zhou et al. 2019)was used in the

GFDL-FV3, the Thompson microphysics scheme in the CAPS-

FV3 was a partially two-moment version, and the Thompson

microphysics in the HRRRv3 was the two-moment version

(Thompson et al. 2008). Finally, the code bases for each

model differed slightly, with the CAPS-FV3 and GFDL-FV3

sharing a code base developed originally by GFDL but dif-

fering in the physics packages used in the code framework.

The NSSL-FV3 code also originated with GFDL, but was

further developed by the EnvironmentalModeling Center for

the UFS system and implemented physics packages devel-

oped by CAPS.

b. Surrogate severe and simulated reflectivity specifications

To examine the differences between severe weather fore-

casts from the FV3-based CAMs and the WRF-based CAM,

simulated reflectivity and UH are verified. Surrogate severe

fields are generated following Sobash et al. (2011). To generate

surrogate severe fields spanning the convective day (defined as

1200–1200 UTC the following day), the native 2–5-km UH

output from each model is first regridded to an 80-km grid

(specifically, the NCEP 211 grid).4 The maximum 2–5-km UH

value during the convective day and within each 80-km grid

box is assigned to the grid box (i.e., a neighborhood maximum

during a 24-h period). Next, the UH value at each grid point is

tested to determine whether or not it exceeds a user-defined

UH threshold, resulting in a binary grid of ones (did exceed the

threshold) and zeroes (did not exceed the threshold). A

smoother using a Gaussian kernel density weighting function is

then applied to each point to create a smoothed probability

field. Two tunable parameters exist in the surrogate severe

fields: the UH exceedance threshold and the s used in the

Gaussian kernel density smoother. To determine the best

combination of UH threshold and s for different verification

metrics, 5300 combinations of s and UH threshold are tested,

similar to the approach of Clark et al. (2018) when evaluating

the 2016 CLUE ensemble subsets. These combinations use 100

different UH thresholds and 53 different s values. During the

2017 SFE, it was found that the FV3-based CAMs generally

produced higher UH values than CAMs using theWRF-ARW

dynamical core when using the same horizontal grid spacing

(Potvin et al. 2019). Thus, a climatology of UH over the 21 days

of SFE 2018 was also computed for the models examined

herein (Fig. 1a), using the maximum value of UH at each grid

point throughout the day. To account for different model cli-

matologies, UH thresholds used to construct the surrogate

severe fields were based on percentile values of the UH from

each model rather than from fixed thresholds. This method

facilitates a fair comparison between models that may produce

vastly different values of UH, particularly in the absence of

direct observations of 2–5-km UH. Thus, climatologically high

values (e.g., the 90th percentile) from each model are com-

pared. Percentiles used to generate the surrogate severe fields

range from the 70th percentile to the 99.7th percentile, in in-

crements of 0.3, and s values range from 40 to 300 km in in-

crements of 5 km.

Simulated reflectivity was analyzed using object-based ver-

ification at three thresholds: 20, 30, and 45 dBZ. While two of

these thresholds are relatively low for identifying convective

storms, higher thresholds became quite noisy and patterns in

the data were difficult to discern. Therefore, we only include

one higher threshold, 45 dBZ. A climatology of simulated re-

flectivity values on each model’s native grid was also generated

across the cases within the 2018 SFE, using the maximum value

across the day at each grid point to examine the magnitude of

the strongest convection (Fig. 1b). The 45-dBZ threshold is

approximately the 95th percentile for each model, although it

is a higher percentile for the HRRRv3 than the FV3-based

models, indicating that higher reflectivity values make up a

larger part of the distribution in the FV3-based models com-

pared to in the HRRRv3.

c. Verification data and metrics

Verification was performed across the eastern 2/3 of the

CONUS (Fig. 2). Limiting the analysis to the eastern 2/3

CONUS helps to mitigate the effect of having many zero

values of UH or other storm attributes of interest consistently

across the western United States, which would decrease the

climatological values at each percentile. Given that the western

CONUS does not often experience severe convective storms

and that radar coverage and population density is relatively

TABLE 2. Model specifications. Microphysics schemes used include Thompson (Thompson et al. 2008) and the 6-category GFDL

scheme (GFDL-6cat; Chen and Lin 2013; Zhou et al. 2019); planetary boundary layer (PBL) schemes used include the Mellor–Yamada–

Nakanishi–Niino (MYNN; Nakanishi and Niino 2004, 2006), a scale-aware version of MYNN, and the Yonsei University (YSU; Hong

et al. 2006). Land surface models include the Rapid Update Cycle (RUC; Smirnova et al. 2016) and the Noah (Chen and Dudhia 2001).

Model ICs LBCs Microphysics LSM PBL Grid spacing

HRRRv3 RAP GFSf Thompson RUC MYNN 3.0 km

NSSL-FV3 GFS — Thompson Noah MYNN 3.3 km

GFDL-FV3 GFS — GFDL-6cat Noah YSU 3.0 km

CAPS-FV3 GFS — Thompson Noah MYNN-SA 3.25–3.5 km

4 https://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html#

GRID211.
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low, limiting its impact on the climatology helps ensure that the

UH percentiles reflect the most likely areas to receive severe

weather during the SFE. Multi-Radar Multi-Sensor (MRMS;

Smith et al. 2016) composite reflectivity data were used to

verify the simulated composite reflectivity at the top of each

forecast hour. Surrogate severe fields were verified using local

storm reports (LSRs), regridded to the same NCEP 211 80-km

grid. All three types of LSRs (hail, wind, and tornadoes) were

included in the regridding, as 2–5-km UH has been shown to

be a good proxy for all convective hazard types (Sobash

et al. 2011).

Contingency table–based statistics were calculated for the

surrogate severe fields, including several metrics extracted

from the traditional 23 2 contingency table. For the surrogate

severe fields, the ROC area was computed using the proba-

bility of detection (POD):

POD5
hits

hits1misses
, (1)

and the probability of false detection (POFD):

POFD5
false alarms

false alarms1 correct nulls
, (2)

computed at probability thresholds of 2%, 5%, and increments

of 5%–95%, with the area being computed using the trape-

zoidal method (Wandishin et al. 2001). A ROC area of 1

indicates a perfect forecast, and a ROC area at or below 0.5 has

no skill. However, the ROC area does not provide information

about reliability. Therefore, two forecast metrics that highlight

aspects of reliability are also computed. First, the reliability

component of the Brier Score (Brier 1950; Murphy 1973) was

calculated for each field. This score is negatively oriented, such

that a value of 0 is a perfect score and indicates a perfectly re-

liable forecast. Second, the fractions skill score (FSS; Roberts

and Lean 2008) was computed to compare the neighborhood

grid coverage between forecasts and observations. The FSS is a

positively oriented score, with 1 indicating a perfect forecast and

0 indicating a no skill forecast. For the surrogate severe verifi-

cation, FSS was computed using binary report fields.

Finally, forecasts are examined via the critical success index

(CSI; Schaefer 1990), which is calculated as follows:

CSI5
hits

hits1misses1 false alarms
, (3)

at the same thresholds as the ROC area. The CSI does not take

into account the effect of correct nulls, which makes it a useful

score for the rare event scenario, whenmost events fall into the

correct null element of the 23 2 contingency table. The CSI is

displayed using a performance diagram (Roebber 2009), which

visualizes multiple verification metrics simultaneously.

Object-based verification was performed using MODE

(Davis et al. 2006, 2009). MODE was applied to the simulated

reflectivity forecasts at each hour, to discern diurnal trends in

the number and size of storms. MODE was also applied to the

24-h surrogate severe fields at the 15% threshold, which meets

the categorical definition of a slight risk of severe wind or hail

according to the SPC. Slight risk areas were compared between

the surrogate severe fields and practically perfect fields for

surrogate severe fields with combinations of s and UH per-

centile that optimized either the FSS, ROC area, or the reli-

ability component of the Brier score. Practically perfect fields

were created using s 5 120 km, following Sobash et al. (2011)

and Hitchens et al. (2013).

In addition to the methods of objective verification de-

scribed above, subjective evaluation by participants in the 2018

FIG. 1. Climatology of (a) daily maximumUH on the native grid

(dashed lines) and 80-km grid (solid lines) and (b) reflectivity on

the native grid for each model analyzed during 21 days of SFE 2018.

FIG. 2. The verification domain for the current study. Dots indicate

grid points included in the grid-based verification statistics.
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SFE took place via a survey, which asked them to rate forecasts

of simulated composite reflectivity overlaid with 2–5-km UH

greater than 75m2 s22 from each model on a scale from 1 (very

poor) to 10 (very good). Participants were also encouraged to

provide comments on the configurations, to elaborate on their

scores. The comments provided information about what model

characteristics captured participants’ attention, highlighting

forecast aspects of good performance and forecast aspects

needing improvement on a case-by-case basis.

3. Results

a. Model climatologies

When calculating UH climatologies for the FV3-based

models and the HRRRv3, obvious differences in the model

behavior were seen at both the native grid resolution (Fig. 1a,

dashed lines) and when the UH was regridded to the 80-km

grid to calculate surrogate severe fields (Fig. 1a, solid lines).

For example, the 70th percentile of UH in the HRRRv3 on the

80-km grid was ;10m2 s22, versus 60m2 s22 in the FV3-based

models. The FV3-based models have similar UH climatologies

on the 80-km grid until very high percentile values (;95th

percentile and above), while at the native resolution the differ-

ences between FV3-based models get smaller as the percentile

increases. In all cases, the differences between the FV3-based

models and the HRRRv3 is much larger than the differences

among the FV3-based models.

The differences in UH climatology reflect the need for

comparing FV3-based models and WRF-ARW-based models

using UH percentiles, rather than fixed UH thresholds. By

using percentiles rather than thresholds, meaningful compari-

sons can be made between relatively high values of UH in each

model. Considering that explicit measurements of UH do not

exist and that there has been limited work on what a UH value

should theoretically be, we instead use LSRs as a proxy for

verification. Additionally, severe convective storms are rela-

tively rare events that fall at the tails of themodel distributions,

so percentile exceedance values are more appropriate than

fixed threshold exceedance values.

The reflectivity climatology shows smaller intramodel dif-

ferences than the UH climatologies throughout most of the

distribution, although the HRRRv3 has a smoother distribu-

tion (Fig. 1b). The FV3-based models have higher reflectivities

at most of the larger percentiles, starting at about the 90th

percentile. As simulated composite reflectivity is a diagnostic

that depends on model physics and postprocessing (Koch et al.

2005), the differences could be attributable to many different

sources. However, unlike UH, we have observations of com-

posite reflectivity to compare to the model forecasts. As such,

the analyses of composite reflectivity will focus on fixed

thresholds of composite reflectivity rather than percentile-

based thresholds.

b. Contingency table–based results

The surrogate severe fields described in section 2b were used

to compare overallmodel performance using different verification

metrics, with the idea that the best performance from each model

(irrespective of the specific UH percentile/s combination)

could be compared. In terms of ROC area and FSS, the

HRRRv3 outperformed all three FV3-based models (Fig. 3),

with a large swath of the UH percentile/s space having higher

values than the corresponding space in the FV3-based models.

Optimal smoothing levels (as indicated by s) for the ROC area

performance was similar between all four models examined,

with theNSSL-FV3 achieving its highest ROC area at a slightly

larger s than the other three models. However, the HRRRv3

and the NSSL-FV3 had larger parameter space areas of higher

ROC area than the CAPS-FV3 or the GFDL-FV3. The ROC

area is clearly more a function of UH percentile than of s,

showing the importance of POD in the rare event scenario to

the calculation of the ROC area. In the rare event scenario,

the ROC area is heavily penalized for missing events, and so

optimizing the ROC area often results in high probabilities

and overforecasting (Gallo et al. 2018). These ROC areas are

less than those found by Potvin et al. (2019; their Fig. 2). We

hypothesize that this decrease is due to the underlying weather

occurring during SFE 2018 compared to SFE 2017, as the lowest

maximum ROC area found by Potvin et al. (2019) is higher

than the highest ROC maximum area found in this work

(0.876 from Potvin et al. 2019, compared to 0.875 herein).

However, a full investigation of the reasons for the decrease

is beyond the scope of this work. These year-to-year differences

motivate longer testing periods for experimental models, to

capture a large sample of meteorological events. However, the

subjective evaluation data collected during these relatively

shorter time frames can help capture nuance that objective

metrics with a large sample size may miss, which will be dis-

cussed in section 3d.

A similar pattern emerges with the FSS results, although the

FSS showsmore sensitivity to s than the ROC area does, and is

optimized at lower s values than the ROC area (Table 3).

Unlike the ROC area, which had approximately the same

smoothing level to achieve the highest score between models,

the HRRRv3 requires much less smoothing than the FV3-

based models to achieve its highest FSS (s 5 90 km). Lower

smoothing values preserve information provided by the model

regarding which areas are most at risk, as smoothing lowers the

maximum probability value and distributes the probability

over a larger area. So, the less smoothing required to achieve

the maximum score, the more useful the original information

from the model. Also, larger smoothers require more compu-

tational resources to implement, so smaller smoothing values

are more computationally optimal. While this may be less of a

concern if postprocessing a large batch of data, if post-

processing is being done on a run-by-run basis at or near–real

time, reducing the computational expense is necessary. Of the

FV3-based models, the CAPS-FV3 requires the least smoothing

to achieve its highest score (s5 105 km). The NSSL-FV3 scores

highest of the FV3-based models in FSS, but alongside the

GFDL-FV3 requires the most smoothing to maximize FSS

(s 5 120 km). However, the HRRRv3 has FSS scores better

than the best FV3-based model score (0.3735) across a wide

variety of percentile and s variations.

These FSS scores are quite a bit lower than the FSS scores

in Potvin et al. (2019), which examined iterations of the
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GFDL-FV3 and CAPS-FV3 from the 2017 SFE. Much of this

decrease was attributable to different methods of calculating

the FSS; Potvin et al. (2019) use a smoothed, probabilistic field

of observations in calculating their scores rather than a binary

field of 1s and 0s, leading to smaller differences between the

forecast and observed field. This accounts for a reduction in the

FSS of ;0.2 for both models (not shown). However, besides

the decrease due to the different methodology, a year-to-year

decrease also occurred for these two models, with the GFDL-

FV3 and CAPS-FV3 FSS scores in Fig. 3 being;0.05 less than

TABLE 3. Percentile and s values that maximize surrogate severe statistical scores. The probability of maximum CSI indicates the

probabilistic threshold at which CSI is maximized for that UH percentile and s combination.

Model Score maximized UH percentile s (km) Probability of maximum CSI (%)

NSSL-FV3 ROC area 76.9 150 —

FSS 85.0 120 —

CSI 89.5 130 40%

CAPS-FV3 ROC area 75.7 135 —

FSS 88.0 105 —

CSI 93.7 130 25%

GFDL-FV3 ROC area 79.0 140 —

FSS 85.0 120 —

CSI 91.9 180 30%

HRRRv3 ROC area 79.3 135 —

FSS 88.6 90 —

CSI 82.0 130 60%

FIG. 3. Contour plots of verification metrics for each model considered (rows) for three different statistics (columns) across surrogate

severe fields generated using different UH percentiles and s in the Gaussian smoother. The combination of percentile and s yielding the

highest score for each metric and model combination is marked with an X, and the corresponding score is annotated to the upper right of

the X.
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the Potvin et al. (2019) scores from SFE 2017 when calculated

using a binary observation field (not shown). As in the case of

the ROC areas, this decrease is speculated to be a function of

the difference between the spring 2017 and spring 2018

seasons.

The minimum reliability component of the Brier score

(Fig. 3) was extremely similar between models, indicating

that a highly smoothed field generated using a high UH

threshold achieved the best results for all four models. All

models had a wide range of high UH values that achieved low

BSrely values. The reliability diagram for the surrogate severe

fields generated using the optimal combinations of UH per-

centile and s for each model show the high reliability of the

smoothed fields that give the minimum BSrely (Figs. 4a–d).

However, these probabilities never get higher than 40%–55%

due to the large amount of smoothing. The reliability diagram

also shows the large overforecasting that goes along with

maximizing ROC area, with overforecasting occurring at all

probability levels for each of the models examined. The fields

maximizing the FSS overforecast slightly, but fall much closer

to the line of perfect reliability than the fields optimizing the

ROC area. Optimizing the CSI (calculated at each potential

probability threshold) led to more overforecasting than opti-

mizing the FSS for the HRRRv3 and NSSL-FV3, but similar

reliability for the GFDL-FV3 and CAPS-FV3 (Fig. 4a) be-

tween the two optimized fields. The CAPS-FV3 (Fig. 4a) and

GFDL-FV3 (Fig. 4b) tended to have similar reliability when

optimizing FSS and CSI, whereas the reliability of the HRRRv3

field that optimized CSI was more similar to the field that

optimized the ROC area. The reliability of the NSSL-FV3

FIG. 4. A reliability diagram showing the performance of the surrogate severe fields created with the percentile

and s combination to optimize particular scores for (a) the CAPS-FV3, (b) theGFDL-FV3, (c) theNSSL-FV3, and

(d) the HRRRv3. The different line styles represent different statistics optimized by the surrogate severe field. The

black diagonal line indicates perfect reliability.
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(Fig. 4c) optimized by CSI was in between the optimized FSS

and optimized ROC area fields.

From these metrics, differences in the surrogate severe fields

seem mostly consistent across smoothing levels and percen-

tiles. The similarity of the relative model performance at in-

dividual probability thresholds is emphasized when looking

at a performance diagram (Roebber 2009), which contains a

point for each probability threshold for each combination of

smoothing level and UH percentile (Fig. 5). The HRRRv3

consistently has higher PODs and success ratios than any of the

FV3-based runs, particularly where bias is between 5.0 and 0.5.

The overall difference in CSI between the HRRRv3 and the

NSSL-FV3 or CAPS-FV3 is for the most part larger than

the difference between the NSSL-FV3 and the CAPS-FV3, or

the CAPS-FV3 and the GFDL-FV3. The probability maxi-

mizing CSI also differed much more between the HRRRv3

and the FV3-based models than among any of the FV3-based

models, with the CSI being maximized at a much higher

probability for the HRRRv3. Probabilities maximizing CSI in

all of the FV3models had a bias closer to 1 than the probability

maximizing the CSI of the HRRRv3. While the overall per-

formance of the HRRRv3 is consistently better according to

Fig. 5, differences in s and UH percentile used to generate the

fields can have a significant impact on the look of the forecasts

day-to-day, which may be better captured using object-based

metrics.

c. Object-based results

In addition to the contingency table–based statistics, object-

based statistics provide insight to the size and location of

‘‘slight risk’’ equivalent areas, as indicated by surrogate severe

probabilities greater than 15%. The surrogate severe fields

optimizing the ROC area, FSS, and BSrely were selected to

understand how the characteristics of these fields differed in an

object-based framework. The mean, 75th, 90th, and maximum

area generated by the models was larger than the observations

in all cases (Fig. 6a), suggesting that the areas are generally too

large when compared to the practically perfect fields generated

using the LSRs, which uses a s of 120 km in the Gaussian

smoother.While the lower end of the distribution—the smaller

areas—compare relatively well to the observations, the distri-

bution of the model fields is overall shifted toward higher

values compared to the observation distributions. The statistic

being maximized influences how large the areas are, with the

largest 15% areas created by maximizing the ROC area.

Maximizing the reliability generally resulted in areas closest to

the observations because the increased smoothing decreased

the amount of area covered by the 15%. The FV3-based

models also tended toward larger 15% areas compared to the

HRRRv3 at the higher ends of the distribution. In terms of

numbers of 15%objects, maximizing by the FSS andROC area

resulted in too many areas relative to the number of observed

15% areas (n 5 45), although the specific number of observed

15% objects is a function of the smoothing used to generate

practically perfect fields from the LSRs. In comparing the

models, the FV3-basedmodels produced fewer 15% areas than

the HRRRv3. Optimizing by the reliability component of the

Brier score created too few areas compared to observations.

The only statistic showing no systemic differences between the

FV3-based models and the HRRRv3 regarding the number of

objects created was the BSrely.

Besides wanting the correct size of 15% areas, ideally our

objects also would be in the right location. Centroid distances

between matched observed practically perfect objects and the

model surrogate severe objects (Fig. 6b) varied from a mini-

mum of 0.17 grid boxes (;13.8 km) to a maximum of 9.66 grid

boxes (;785.1 km). Optimizing by the reliability component of

the Brier score created the smallest differences between areas

throughout the distribution of differences, but also the smallest

number of matched pairs for a given ensemble. Maximizing by

the ROC area generally created the largest differences for all

models except theGFDL-FV3, and optimizing by FSS yielded the

highest amount of matched objects for all given models. Within

eachoptimized statistic, theHRRRproducedmorematchedpairs

than the FV3-based models, although this difference was much

narrower for the FSS than for the other metrics.

While surrogate severe objects provide information on the

daily extent and location of expected severe convection,

reflectivity objects allow for examination of finer temporal

scales (i.e., hourly) and of the evolution of convective systems

throughout the day. Given that convective mode and evolu-

tion are two critical aspects of severe weather forecasting,

reflectivity objects at thresholds somewhat lower than the typical

magnitude of convective cores provide another important

verification component. Reflectivity objects greater than or

FIG. 5. A performance diagram for the surrogate severe fields

generated using 100 different UH percentiles and 53 different

s values. Individual points are semitransparent; thus higher den-

sities of color indicate more points. Percentage thresholds plotted

for each of the 5300 surrogate severe fields at 2% and 5%, then in

5% intervals to 100%. The highest CSI achieved by each model for

any UH percentile and s combination is indicated by the opaque

square outlined in orange. Solid black lines are lines of constant

CSI, and dashed black lines are lines of constant reliability.
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equal to 30 dBZ from 2 May 2018 show how the HRRRv3

(Fig. 7d) captured the extent of the system across Kansas and

Nebraska better than any of the FV3-based models (Figs. 7a–

c), but also producedmore areas of false alarm across Colorado

and Wyoming. Additionally, the storms in Oklahoma and

Texas were not captured well by any of the models, although

the FV3-based models at least had reflectivity objects near the

Texas and Oklahoma border.

Aggregating across the SFE 2018 cases, at the peak of the

diurnal cycle the FV3-based models improve on the overall

number of objects compared to the HRRRv3 at the 20- and 30-

dBZ thresholds throughout the diurnal cycle. At the 20-dBZ

threshold, all models overpredict the number of reflectivity

objects (Fig. 8a), with the HRRRv3 and the GFDL-FV3 hav-

ing the largest overprediction at the peak of the diurnal cycle,

around forecast hours 21–25. For most of the time, the NSSL-

FV3 is the closest to MRMS observations, although it does not

maintain enough objects after the peak convective cycle.

Similar patterns hold for the 30-dBZ threshold (Fig. 8b), al-

though the GFDL-FV3 at this threshold is more similar to the

other FV3-based models than it is to the HRRRv3 during the

peak of the convective cycle. The peak of the convective cycle for

the GFDL-FV3 is also shifted earlier than in the observations.

The CAPS-FV3 overpredicts the number of objects for most

forecast hours up to hour 25. The NSSL-FV3 initially has too

many objects at early forecast hours, but does not have enough

objects at the peak of the convective cycle and continues this

underprediction through the end of the analyzed run time.

However, the previous thresholds are below what typically

indicates convective storms. At the highest reflectivity threshold

(45 dBZ), theHRRRv3 doesmuch better than the othermodels,

generating roughly the same number of objects as reality. All

FV3-based models at the 45-dBZ threshold overpredict the

number of objects, particularly early in the forecast cycle

(e.g., forecast hours 2–12), perhaps indicating too intense of

reflectivity values being produced by nonconvective storms.

Additionally, the data assimilation used by the HRRRv3

likely contributes to the more realistic number of storms,

since the FV3-based models are ‘‘cold start.’’ Early over-

prediction could occur in this scenario if, for example, the

cold-start model attempts to develop a line of storms but in-

stead gets multiple smaller cells. Future work will focus on

incorporating data assimilation to FV3-based CAMs, to

create a more direct comparison with the HRRR. There is

only slight overprediction by the FV3-based models in fore-

cast hours 13–19, but then the overprediction is amplified

FIG. 6. Object-based statistics for the 15% surrogate severe fields generated using UH percentile and s combinations to maximize a

specific statistic.Marker shape indicates the statisticmaximized andmarker color indicates themodel.Observations are indicated by black squares.

Object-based attributes are (a) the area of 15% coverage (in terms of 80-km grid boxes), with the number of objects indicated in the legend, and

(b) the centroid distance (in terms of 80-km grid boxes) between 15% objects, with the number of paired objects indicated in the legend.
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again during forecast hours 21–36: the peak time for severe

convection in the diurnal cycle. At this point in the forecast

cycle, spinup issues from cold-start initialization are not expected.

Therefore, for convective reflectivity objects, the HRRRv3 is still

performing better than the FV3-based models. One potential

concern with reflectivity objects is that a model withmore small-

scale detail may produce more but smaller continuous regions

over a certain threshold, whichmay help explain the behavior of

the FV3-based models.

In addition to object count, we examine the object area to

determine if the models are producing storms that are covering

approximately the same amount of area as the observed

MRMS storms (Fig. 9). The area statistics are more similar to

observations than the object count statistics. Therefore, since

the models were generally overforecasting the number of ob-

jects, the storms produced by the models would necessarily be

smaller than the observed storms for most individual storms.

All models underforecast the area of 20-dBZ objects from

forecast hours 19–30 (Fig. 9a), covering the peak convective

coverage of the day. The HRRRv3 has the smallest fluctuation

in area covered over the course of the day, relative to the rest of

the models. At higher reflectivity thresholds, differences be-

tween the models and the observations lessen.

d. Subjective analyses

SFE 2018 participants assigned ratings to each of the

models examined here, based on the composite reflectivity

and hourly maximum UH. They were told to consider factors

such as convective initiation, mode, evolution and timing in

their ratings. Participant ratings of the models showed a

similar pattern to the contingency table–based metrics of the

surrogate severe fields, with the HRRRv3 ratings distribution

having the highest median score (6/10; Fig. 10a). The CAPS-

FV3 and NSSL-FV3 were often rated similarly, and the

GFDL-FV3 was typically rated lowest of the four models in

question. This pattern differs from the 2017 SFE, where an

earlier version of the CAPS-FV3 was rated lower than the

GFDL-FV3. Overall, the participant ratings of the HRRR

and the FV3-GFDL decreased by 0.3 and 0.8 points compared

to 2017, while the participant ratings of the CAPS-FV3 in-

creased by 0.5 points.

Participant comments often focused on overforecasting the

coverage and intensity of convective storms compared to the

observations. Overforecasting was an issue common to all of

the FV3-basedmodels (Figs. 10b–d), but participant comments

most often mentioned the GFDL-FV3 (Fig. 10c). This over-

forecasting likely led to a lower subjective score for the GFDL-

FV3 compared to the other FV3-based models. Subjective

scores help us understand how forecasters and other end-

users of the model output interrogate the model output,

which can help target areas for improvement that could be

less evident from the bulk statistics. For example, the rapid

and intense upscale growth mentioned by participants in their

survey responses may also influence objective verification met-

rics, giving model developers a mechanism to investigate when

trying to improve the overall objective verification statistics.

FIG. 7. Reflectivity objects greater than or equal to 30 dBZ at forecast hour 23 for (a) the GFDL-FV3, (b) the

NSSL-FV3, (c) theCAPS-FV3, and (d) theHRRRv3 at 2300UTC 2May 2018.Model-simulated reflectivity objects

are shown by the red filled contours, and observed reflectivity objects are shown by the blue contours.
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e. Illustration of methods: 30 May 2018

Accumulating aggregated statistics for surrogate severe

fields calculated using multiple UH percentiles and smoothing

values determines what combination is most skillful for a given

metric. However, given that we have previously seen how the

‘‘most skillful’’ parameter combination can vary depending on

what metric is maximized (Fig. 3), an example case is presented

here to show how the practical appearance of the forecast can

also subsequently vary. This case demonstrates why care must

be taken when determining how to create surrogate severe

fields for comparison across models.

On 30 May 2018, multiple areas of the CONUS faced a

threat of severe weather. A negatively tilted shortwave

trough moving toward the upper Mississippi valley, southern-

stream perturbation affecting the central Rockies and High

FIG. 8. Reflectivity object counts as a function of lead time at

(a) 20-, b) 30-, and (c) 45-dBZ thresholds. Note that the y axis

differs between subplots, scaling to show the diurnal cycle in object

counts.

FIG. 9. Reflectivity object cumulative area in native resolution

grid boxes as a function of lead time at (a) 20-, (b) 30-, and (c) 45-dBZ

thresholds.
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Plains, and the remnants of a tropical system were all af-

fecting different regions of the CONUS. Resultant mesoscale

boundaries were also abundant from convection the previ-

ous day. Subjective ratings of model performance within the

daily domain of interest were mixed, with the HRRRv3

performing best according to the nine survey respondents

(not shown).

Surrogate severe fields designed to optimize the ROC area,

FSS, and the reliability component of the Brier score show how

different a forecast from the same model can look, simply by

adjusting the UH threshold and s value used to generate the

surrogate severe fields (Fig. 11). In this case, we will examine

forecasts from the NSSL-FV3, although similar results oc-

curred for all models examined in this study. Maximizing the

FIG. 10. (a) Subjective evaluations fromSFE 2018 participants throughout the experiment, whichwere assigned based on looking at 24-h

loops of simulated composite reflectivity andUH from (b) theNSSL-FV3, (c) GFDL-FV3, (d) CAPS-FV3, and (e)HRRRv3 compared to

(f) observed composite reflectivity; plots for a sample case (1 Jun 2018) are shown. Local storm reports could also be overlaid for

verification purposes (not shown).

FEBRUARY 2021 GALLO ET AL . 15

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 12/10/20 05:33 AM UTC



ROC area (Fig. 11a) results in broad swaths of high proba-

bility and an abundance of false alarm area. While all of the

reports fall within areas of probability . 5%, the forecaster

would be hard-pressed from this depiction to determine

which area of the CONUS is most at threat for severe

weather. Optimizing by FSS maintains low probabilities

across much of the CONUS, but decreases probabilities in the

eastern part of the domain, where less observed severe weather

occurred. However, a relative maximum remains in the south-

east, shifted just east of where the reports occurred. High

probability areas across the Oklahoma and Texas panhandles

are also maintained. This area, which was the area of focus

during the SFE that day and thus had the highest anticipated

threat for severe weather, maintains high probabilities when

optimizing by either the ROC area or the FSS. Finally, opti-

mizing by the reliability component of the Brier score (Fig. 11c)

leads to large swaths of relatively low probability across the

southern Plains and the northern Rockies, completely elimi-

nating the area across the southeast and the area with many

reports in the Midwest. While the area of most concentrated

reports is encompassed within the area of highest probability,

the probability is only between 15% and 30% and lacks speci-

ficity compared to the other optimization methods, covering all

of Oklahoma, half of Kansas, and all of the Texas Panhandle.

4. Conclusions

This work examined numerical weather prediction forecasts

made as part of NOAA’s Hazardous Weather Testbed SFE in

2018, including three experimental convection-allowing models

using the FV3 dynamical core. Since FV3 will serve as the dy-

namical core of the U.S. Unified Forecast System, evaluating its

performance for forecasting severe convection is critical. As a

baseline, the models are evaluated alongside an operational

deterministic CAM, the HRRRv3. These early iterations of

FV3-based CAMs show promise, particularly in the realm of

object-based verification measures. The NSSL-FV3 and CAPS-

FV3 create more realistic diurnal cycles of numbers of storms

at lower reflectivity thresholds than the current operational

HRRRv3, although those storms may be smaller than the

storms in the observed MRMS dataset. However, work re-

mains to improve the performance of the FV3-based systems

at the higher reflectivity thresholds that are more indicative

of convective processes. The surrogate severe field areas also

tended to be larger than corresponding areas of practically

perfect probability generated using LSRs.

Contingency table–based verification metrics, however, show

that the FV3-based models still need work to achieve the bulk

statistical skill of the HRRRv3. Even when testing surrogate

severe fields generated using a variety of UH percentiles and

s values, the highest scores achieved by FV3-based models

were lower than those produced by the HRRRv3. Objective

verification scores such as the POD, success ratio, FSS, and

ROC area mirrored the subjective evaluations carried out by

participants in showing theHRRRv3 scoring best, followed in

order by theNSSL-FV3 and CAPS-FV3, with theGFDL-FV3

generally scoring the lowest. While reflectivity climatologies

were similar between all of the models, the UH of FV3-based

FIG. 11. Surrogate severe fields on 30May 2018 generated from the NSSL-FV3 using the UH percentile and s that

optimizes (a) ROC area, (b) FSS, and (c) the reliability component of the Brier score throughout the entire SFE. The

black circles indicate local storm reports for the day, which are used to construct (d) the practically perfect field. The

shaded box indicates the domain of the day during the SFE, over which the subjective evaluations were performed.
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systems tended to contain much higher values than those of

the HRRRv3, mirroring what Potvin et al. (2019) found with

models run during the 2017 SFE. However, scores overall

were lower than those found by Potvin et al. (2019) for SFE

2017 for prior iterations of the GFDL-FV3 and CAPS-FV3.

This work also demonstrates the impact of a critical facet of

designing verification of any system destined for widespread

adaptation: score selection. Computing the surrogate severe

fields based on what metric was maximized resulted in drasti-

cally different forecasts, despite the fact that each of these

forecasts was ‘‘best’’ in one way or another. Integrating sub-

jective evaluation may help make the decision of what score to

maximize, but it may be that the tradeoffs made to optimize a

given metric could degrade other aspects of the forecast to the

extent that the forecast is no longer useful. For example, op-

timizing based on ROC area leads to large overforecasting, but

optimizing based on the reliability component of the Brier

score leads to broad swaths of relatively low probability and a

decrease in sharpness of the forecasts. Future work will ex-

amine how to best compute surrogate severe fields, and

whether it is possible to design an optimized metric that

combines aspects of multiple verification scores in such a way

that minimizes trade-offs between important forecast aspects

and matches subjective end-user impressions.
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