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1. Introduction 

 
During the five-week Hazard Weather Testbed 

(HWT) Spring Forecasting Experiment (SFE) of 
2022 (Clark et al. 2022), 80 individuals representing 
both operational forecasters and researchers 
subjectively evaluated a suite of seven calibrated 
tornado guidance methods against available local 
storm reports (LSRs) and associated practically 
perfect hindcasts (PPHs).   Evaluations were 
conducted on the morning following the event for a 
roughly 300 km x 300 km domain judiciously placed 
to encompass significant convection for the given 
day. After the SFE, these same calibrated guidance 
methods were evaluated objectively as well for the 
same days and HWT-defined domains, using 
various commonly invoked methods including 
performance and receiver operating characteristic 
(ROC) diagrams as well as Brier skill score 
reliability component (Brier_rel).   

 
It was found that the performance evaluations 

of the calibrated guidance methods based on 
objective versus subjective evaluations did not 
always concur. This study investigates reasons for 
incongruence among these evaluation methods.   
As such, this study ventures into the challenge of 
what constitutes a “good” forecast as well posed by 
Murphy (1993).  Here the means for analyzing 
forecast “quality” or “skill”’ per objective metrics is 
analyzed as compared to forecast “value” as given 
by the subjective evaluations of SFE participants. 

 

As part of this analysis of evaluation methods, 
a new objective parameter is formulated using a 
weighted sum of metrics based on the three 
objective verification methods (listed above) to 
provide a verification perspective that is consistent 
with the subjective evaluation, and to identify the 
degree to which these objective metrics measure 
skill in congruence with subjective evaluations.  
 

The specific calibrated methods evaluated are 
generically represented here (methods A-G) 
because the purpose of this study is not necessarily 
to identify the best method, but rather to analyze the 
differences among subjective and objective 
evaluation approaches.   In general, the calibrated 
guidance methods fall into two types:  machine 
learning models that use various forecast storm and 
environmental fields as predictors, and a more 
traditional approach that is based on an identified 
correlation among the significant tornado 
parameter (STP, Gallo et al. 2018, Jahn et al. 2020) 
and observed tornado frequency (Thompson et al. 
2012).    An explicit description of the seven 
calibrated methods can be found at:   
https://hwt.nssl.noaa.gov/sfe/2022/docs/HWT_SF
E2022_operations_plan.pdf. 

 

2.  Method 

HWT participants subjectively scored the 
calibrated methods on a scale of 1-10 (with 10 
being best) comparing the areal coverage of 
tornado probability at set thresholds (2%, 5%, 10%, 
15%) as compared to PPH tornado probabilities at 
the same thresholds.  A PPH represents a density 
coverage of observed tornadoes and was 
calculated using a Gaussian filter with 𝜎 =
1.5 (~120 km; Hitchens et al. 2013).  Subjective 
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scores from HWT evaluators 
are averaged for each of the 
seven calibrated methods 
across 12 tornadic cases.   

 
Only cases with at least 

one tornado observation 
were considered (12 of 19 
HWT cases) because of 
inconsistencies among SFE 
participants regarding their 
basis for subjective scoring 
of non-tornadic (null) cases.  
An example inconsistency is 
to what degree a guidance 
product should be penalized 
for forecasting greater than a 
2% probability of tornado 
occurrence, given that there 
was no observed tornado but 
yet the conditions existed 
such that the possibility of 
tornadoes was not zero. 
 

The calibrated methods 
are evaluated objectively 
using three metrics including 
the area to the left of the 
performance curve 
(Perf_ALC), the ROC area 
under the curve 
(ROC_AUC), as well as 
Brier_rel.   To allow for direct 
comparison of subjective and objective results, the 
objective values are normalized such that their 
maximum value across all calibrated guidance 
products is equal to the maximum mean subjective 
score for the same case.   
   

To keep the basis of evaluation the same for 
objective as for subjective evaluations, both 
considered data restricted to the same HWT 
domain as selected daily to encompass significant 
convective activity.   Also, objective metrics were 
calculated using the same threshold levels (2%, 
5%, 10%, 15%) as represented in the plot contours 
of tornado probabilities used for subjective 
evaluation.   Based on comments from a large 
fraction of evaluators during the HWT, tornado 
warnings (even if not verified as observations) were 
heavily considered along with tornado local storm 
reports (LSRs) when evaluating calibrated methods 
subjectively.  Thus, for consistency, objective 
metrics were calculated by treating tornado 
warnings as proxy tornado observations.  Only 

LSRs available by HWT evaluation time were 
considered. 

 
 
3.  New objective parameter  
 

As a means of investigating the basis for 
inconsistencies among the subjective and objective 
evaluations, a new objective parameter is 
formulated, which judiciously combines the 
calculated three objective metrics for a result that is 
more consistent with the subjective evaluation for a 
given case.   For the following system of equations, 
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Fig. 1.  Contours of tornado probabilities (magnitude by colors in legend) 

for calibrated guidance methods A-G for 5/2/22 (top plots) and 5/23/22 

(bottom plots) with associated PPH.  
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the left matrix consists of variables 𝐴𝑛1, 𝐴𝑛2, and  

𝐴𝑛3  that represent values respectively of 

Perf_ALC, ROC_AUC, and Brier_Rel by calibrated 

method (n=1 through N for the seven methods, A-

G) for one case.   The variables 𝑏𝑛 in the matrix on 

the right represent for the same case averaged 
subjective scores by calibrated method.   The 

coefficients 𝑥𝑛 are determined by solving  𝑥 = 𝐴−1𝑏.   

Because this is an over-determined system, 𝑥𝑛 

values are identified as a best-fit, in a least-squares 

sense, to satisfy the system of equations.  The 𝑥𝑛 

values can be interpreted as relative weights and 

provide insight as to the degree each of the 

objective metrics are consistent with the subjective 

evaluation for a given case.  These 𝑥𝑛 values are 

then used to calculate a new objective parameter, 

𝐴𝑥. 

4.  Results for specific cases 

Figure 1 shows the suite of tornado probability 

forecasts based on the seven calibrated methods 

(A-G) for example high-end (5/2/22) and low-end 

(5/23/33) HWT tornadic cases.  Objective metrics 

are calculated for both cases to distinguish the 

performance of the seven different calibrated 

methods (A-G).  Performance curves with the 

highest Perf_ALC are most influenced by points at 

relatively high thresholds as seen in the bottom 

right quadrant of the performance diagram (Fig.2, 

left column plots).  The ROC curve, on the other 

hand, favors increased probability of detection at 

low thresholds (points in the upper left corner of the 

ROC diagram, Fig. 2, center column).   

In calculating the new objective parameter for 

case 5/2/22 (one that concurs with the subjective 

scores for this case better than any one objective 

metric alone), a higher weighting coefficient,  𝑥2 =

0.56 , is calculated for ROC_AUC as compared to 

 𝑥1 = 0.38 for Perf_ALC.  This suggests that the 

performance criteria of ROC_AUC is closer than 

that of Perf_ALC to the criteria (both explicit and 

implicit) considered for the subjective evaluation.  It 

could thus be interpreted that emphasis was given 

by evaluators first to method performance at low 

(e.g. 2%) thresholds followed by performance at 

higher thresholds (e.g., 10% and greater).   

Based on evaluator comments, forecasts were 

favored for which the 2% contour encompassed all 

tornado observations or warnings even when the 

 

Fig. 2.  For 5/2/22 (top row) and 5/23/22 (bottom row), performance (left column) and ROC (middle 

column) diagrams with associated Perf_ALC and ROC_AUC values as well as Brier_Rel (right column) 

by calibrated methods A-G and with specific values in the legends  
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false alarm ratio (FAR) was relatively large.  This 

perspective is consistent with the results of this 

same case for methods F and G, which have similar 

ROC_AUC values (Fig. 2) but 2% contour footprints 

(FAR values) that are very different (Fig. 1).  

ROC_AUC favors high performance (high POD) at 

low threshold levels, but does not strongly penalize 

for a high FAR.   

Turning to the results for 5/23/22, Fig. 1 shows 

that method A, having a large 2% probability 

contour that encompasses all observations but 

does so with a relatively large FAR, exhibits 

seemingly contradictory objective scores having 

one of the highest ROC_AUC scores but the lowest 

Perf_ALC value (Fig. 3).  These results suggest that 

the performance diagram penalizes false detection 

more severely than the ROC diagram.  In the 

process of generating a new objective parameter to 

concur with the subjective evaluation, the relatively 

low 0.20 weighting coefficient, 𝑥1, attributed to 

Perf_AUC (Fig. 3) suggests that evaluators (as 

implied also for the 5/2/22 case) are less concerned 

about a high FAR as compared to achieving a high 

POD for this low-end case.    

It should be noted that for both cases, the 

weighting coefficients of Brier_rel were relatively 

very low, indicating that forecast reliability was of 

less concern for subjective evaluation than POD or 

false detection, effects of which are innately 

represented by the other two objective metrics, 

ROC_AUC and Perf_ALC.   

 

5.  Results across full case set 

Weighting coefficients,  𝑥𝑛, were calculated 

separately for each of the 12 tornadic cases (Fig. 

4).  The ROC_AUC objective parameter, having the 

highest  𝑥𝑛 value in nearly all cases, has the highest 

overall influence in the formulation of the new object 

parameter.  This is an indication that ROC_AUC 

conforms more closely than the other two objective 

metrics to the (implicit or explicit) criteria as used by 

evaluators to score subjectively the given set of 

cases.  Conversely, except for one case, Brier_rel 

is consistently the lowest weighted metric thus 

indicating that reliability was less a factor for the 

subjective evaluations.  

The weighting coefficients,  𝑥1−3, are used to 

calculate new objective parameters by case, the 

mean values of which are given in Fig. 5 for each of 

the calibrated methods.  The relatively narrow 

spread in the mean subjective scores across all 

calibrated methods is most consistent with the 

spread in mean values of ROC_AUC as well as the 

new objective parameter as compared to the 

relatively large spread in mean values of both 

Perf_ALC and Brier_rel.  This result emphasizes 

once again that ROC_AUC is the dominant metric 

 

Fig. 3.   For cases 5/2/22 (top) and 5/23/22 (bottom), histograms of the objective metrics Perf_ALC, 

ROC_AUC, and Brier-Rel (first three groups), subjective results (fourth group) and new objective parameter 

(𝐴𝑥 , fifth group, calculated using 𝑥𝑛 as indicated).  Calibrated methods A-G denoted by colors in legend.   
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influencing the new objective parameter and it 

emulates to a larger degree subjective evaluation 

criteria than do the other two objective metrics for 

the cases of this study. 

 
6.  Summary 
 

As part of the post-HWT analysis, it was found 
that no one objective metric adequately reflects the 
collective subjective evaluation as given by 
participants for a given case.  A new objective 
parameter is proposed here that incorporates a 
weighted aggregate measure of skill from three 
different objective metrics:   Perf_ALC, ROC_AUC, 
and Brier_rel.  The ROC_AUC is weighted higher 
because of its strong dependence on POD at 
relatively low thresholds and minimized penalty for 
FAR, criteria that are similar to those considered by 
HWT participants in their subjective evaluations.  
Method performance at higher thresholds (as 
favored by Perf_ALC) is still important, but has a 
secondary relevance.   The influence of the Brier 

reliability component is minimized suggesting that 
forecast reliability is less a factor for subjective 
evaluation, as might be expected when participants 
consider only a few cases during their time in the 
SFE. 

 
Future work will involve expanding the number 

of cases, such as from SFE 2021, for which 
subjective evaluations are available and data are 
accessible to calculate objective metrics.  
Consideration will also be given to formulate a new 
objective parameter based directly on the 
fundamental objective metrics of POD and FAR 
rather than on aggregate parameters Perf_ALC, 
ROC_AUC, and Brier_rel. 
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