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1. Introduction 

 

To provide pertinent warning of imminent 
severe weather, it is important to forecast not only 
the anticipated development of severe storms but 
also the anticipated convective mode, such as 
storm cells developing as part of a line, within a 
cluster, or isolated.  It has been shown that the 
anticipated type of weather hazard (e.g. significant 
winds and hail or tornadoes) is highly related to 
convection mode (Gallus et al. 2008, Smith et al. 
2010).  Various studies have proposed thresholds 
and subjective guidelines using observational data, 
primarily radar reflectivity, to classify storm mode 
(Smith et al. 2012, Thompson et al. 2012).   This 
latter study incorporated also numerically analyzed 
gridded environmental parameters such as storm-
relative helicity, bulk wind difference, and CAPE to 
differentiate environments of tornadic supercells 
and tornadic quasi-linear convective systems 
(QLCSs).   

 
Here, updraft helicity (UH) and its statistical 

distribution within a simulated storm complex is 
investigated to differentiate storm mode of High 
Resolution Ensemble Forecast (HREF) convective 
storms.  UH has been used as a proxy for 
identifying rotating storms in convective-allowing 
model (CAM) forecasts (Gallo et al. 2018, Jahn et 
al. 2020), but Jahn et al. (2022) provided evidence 
that MCSs and supercells can both exhibit a 
relatively similar range of mean UH values and, 
thus, do not necessarily differentiate storm mode.  
They investigated higher-order UH statistical 
moments (standard deviation, skewness, and 
kurtosis), and found that UH skewness (UHS), in 
particular, best differentiated among MCSs and 
supercells.  Their study, however, is considered 
preliminary in that it involves a relatively small set 
of cases (i.e., n=120) and is expanded here to 
investigate UHS as a means of objectively 
forecasting storm mode by implementing a larger 
dataset, one with 722 cases.  In addition, the ability 
to predict the probability (i.e., rather than a strictly 
binary determination) of storm mode is investigated 
here. 

 

2. Methodology  

 

Calculating UHS 
 

To objectively distinguish convection in an 
HREF domain as either a supercell or a mesoscale 
convective system (MCS), a simple and 
straightforward grid-point-based (i.e., not an object-
based) approach is employed by examining the 
statistical attributes of UH values within the local 
region of the simulated convection.  A distribution of 
the 2-5 km AGL UH field is identified by sampling 
values at all surrounding points within a 40-km 
circular region of a point in the HREF domain for 
which a simulated rotating storm was identified 
(such that UH exceeded 99.985% of the HREF 
member UH climatology, a method consistent with 
that used in Gallo et al. 2018 and Jahn et al. 
2020).    Histograms in Figs. 1 and 2 give examples 
of UH distributions for a supercell and an MCS 
case, respectively.   A skewness of 0.27 (1.12) for 
the UH distribution of the supercell (MCS) is 
consistent with the proposed skewness threshold in 
Jahn et al. (2022), that is, a value less (greater) than 
1.0 indicates a higher possibility of a supercell 
(MCS).   

 

Subjectively identifying storm mode 
 

To investigate this hypothesis, that relatively 
low (high) UH skewness differentiates supercells 
(MCSs), a relatively large set of 722 study cases 
was formulated.  To do so, an online survey was 
constructed to allow for subjective classification of 
storm mode case by case.   For each case, survey 
participants were provided HREF reflectivity and 
UH plots depicting convection at a specific forecast 
time and position defined by a local UH maximum.   
An example FV3 case from the on-line survey is 
given in Fig. 3, which lists the six categories from 
which survey participants could choose to
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characterize the convective mode.  In all, 11 SPC 
forecasters and researchers elected to participate 
in the survey, categorizing the storm mode of as 
many or as few of the cases as they wished.  The 
survey consisted roughly of an equal representation 
of forecasts from the five HREF ensemble 
members (ARW, NSSL, HRRR, NAM, FV3).    

 
For simplicity, survey responses for the six 

storm mode classifications were grouped into three 
categories:  supercell (supercell:discrete, 
supercell:in cluster), MCS (QLCS:line, 
QLCS:hybrid, supercell:in line), and disorganized 
(DO).  Survey results (Fig. 4) reveal that of the 2864 
total responses, participants identified 60.7% of the 
cases as supercells and 30.7% as MCSs.  Of the 
ensemble members, NAM forecasts were 
evaluated as having the lowest percentage of 
supercell cases, 52.2%, while FV3 forecasts were 
evaluated with the most, 70.8% (not shown).   
 
Linear regression model:  predicting storm mode 
probability based on UHS 
 

The fact that there were 2864 survey responses 
indicates, on average, roughly 4 responses for each 
of the 722 cases.  Having multiple responses for 
each case allows for assignment of storm mode 
probabilities by case.  The results of each case can 
then be used to populate a scatter plot, with UHS 
as the x-coordinate and the probabilities for the 
three storm modes (SC, MCS, and DO) for the 
same case as y-coordinates.   
 

A scatter plot representing cases associated 
strictly with the NSSL HREF member convective 
forecasts is given in Fig. 5.   Cases with relatively 
low UHS (e.g., less than 1.0) were categorized as a 
supercell (blue points) by a majority of survey 
participants.  Conversely, cases with relatively high 
UHS (e.g., greater than 1.0) were categorized as an 
MCS (yellow points) by a majority.  The probability 
that a case was classified as disorganized (DO, 
green points) does not vary greatly by UHS and 
remains consistently below 20%. 

 
Using linear regression, curves are fitted to the 

data by storm mode (SC, MCS, DO) to represent a 
simple model that provides probabilities of each 
storm mode based on UHS.   A weighted linear  

            

Figure 1.  HREF (HRRR member) 13-hour forecast valid 4/23/20 @01 UTC for (a) 4-km reflectivity, (b)  2-5 km 
vertically integrated UH, and (c) distribution of UH within a 40-km radius of the circle that denotes a local 
UH maximum where UH > 99.985% of HREF member UH climatology. 

                

Figure 2.  Same as Fig. 1 but for an HREF (ARW member) 12-hour forecast valid 4/23/20 @00 UTC. 
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regression method is invoked such that the sum of 
all storm mode probabilities equals 100% for a 
given UHS. 

 
Scatter plots include only cases from the same 

ensemble member (not shown), and linear 
regression models are formulated to represent the 

correlation of storm mode probabilities and UHS 
values for each ensemble member (Fig. 6).   For 
these scatter plots and associated regression 
curves, 80% of the survey data was used for a 
training set and 20% was saved for a test set.  The 
trend in these plots, such that relatively low (high) 
UHS coincides with a relatively high probability for  

  

 

Figure 3.  An example case from on-line survey for an FV3 forecast initialized 3/24/21 @12 UTC,  showing 1-km 
reflectivity valid @23 UTC (left plot) and @00 UTC (center plot), and UH @00 UTC (right plot)  along with related 
environmental values(CAPE, vertical shear, and storm-relative helicity, SRH).   Participants selected one of six 
classifications (listed below plots) that categorizes the storm mode of the convective complex at the point of the 
UH local maximum (small black circle).   

Figure 4.   Subjective results of survey showing 

percentage by storm mode:  supercell (SC, blue), MCS 

(orange), and disorganized (DO, green) for all cases. 

Figure 5.  Scatter plot showing probability of storm 
mode (SC, blue; MCS, yellow; DO, green) for NSSL 
cases.  Weighted linear regression curves represent 
correlation between UHS and storm mode 
probability.   
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MCS
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the formation of supercells (MCSs), is evident in 
the regression models for NSSL, ARW, and NAM 
forecasts, but less so for the other two ensemble 
members.  Storm mode probability is not as well 
differentiated by UHS for the HRRR and FV3 
models, which both favor the formation of 
supercells over MCSs across the full range of 
represented UHS values.    

 

3. Results 

Figure 7 provides an example application of 
this UHS-based storm mode probability model.  
UHS values in the vicinity of the central circle 
range from 0.8 to 1.2, which according to the NSSL 
linear regression model, predicts a supercell 
probability between 55-65%, and an MCS 
probability between 20-30%.  These results concur 
with the subjective (survey) results for which a 
higher percentage (43%) of survey responses 
classified this case as a supercell as compared to 
those classifying it as an MCS (14%).  

 
To assess more broadly the performance of 

the five storm mode probability models (one for 
each HREF ensemble member) a Brier score and 
associated bias were calculated across a set of 
124 test cases (Fig. 8a,b).  The Brier score 
represents the average difference between 

 

Figure 7.  NSSL forecast initialized 3/18/21 @12 UTC,  

showing 1 km reflectivity (a) and UH (b) valid 3/19/21 

@09 UTC.  Linear regression model predicted 

probability of supercell (c) and MCS (d) represented by 

color bar.   

a) b)

c) d)

Figure 6.  Linear regression model of storm mode probabilities by UHS.  Storm mode indicated by color as given 

in the legend. Models trained separately by HREF ensemble member:  ARW, NSSL, HRRR, NAM, and FV3. 
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objective (e.g. model predicted) and subjective (e.g. 
survey evaluated) storm mode probabilities.   Lower 
Brier scores are better.  The UHS approach 
performed nearly the same in predicting the 
supercells for all HREF members, except FV3, 
which consistently over-predicted supercells using 
this technique, and the NAM registered the lowest 
(near zero) bias.  It could be argued that the UHS 
approach worked well in the ARW, NSSL, and NAM 
models for identifying MCSs given the relatively low 
Brier scores and very low biases. 
 

To provide context and further evidence for the 
efficacy of these results, it is helpful to address the 
skill of these models as compared to climatology.  
These results were evaluated using a Brier Skill 
Score (BSS, Fig. 8c), for which a climatology was 
defined using the percentage occurrence of the 
three storm modes as defined by the survey for 
each of the ensemble members (Fig. 4).   Higher 
BSS values are better.  The ARW, NSSL, and NAM 
models all registered a skill higher using the UHS 
approach than climatology in the prediction of 
supercells and MCSs, with the UHS approach 
working best with the NAM model for supercells and 
NSSL model for MCSs.  The FV3 model 
demonstrated no skill using this technique to 
identify convective mode, while the HRRR model 
registered only a slight skill using UHS for 
predicting supercells.   

 
 

 

4. Summary 

The efficacy of UHS to discriminate the mode 
of HREF simulated storms was investigated in this 
study.  Using a relatively large (722) set of HREF 
forecasts of convective storms, the probabilities of 
storm mode (SC, MCS, and DO) were subjectively 
identified case by case through a survey, and UHS 
was calculated from the associated HREF forecast 
data.  A linear regression model represented the 
relationship between UHS and storm mode 
probability.  Storm mode models were created 
separately for each of the five HREF ensemble 
members.  Results associated with ARW, NSSL, 
and NAM storm mode models generally concurred 
with the hypothesis that low (high) UHS 
corresponds to a higher probability of simulated 
supercells (MCSs).  Their positive BSSs are 
evidence that this approach has some skill in 
determining storm mode with these three models.   
The FV3 and HRRR, however, did not show as 
strong of relationship between convective mode 
and UHS and their BSSs communicated little or no 
skill.  
 

It is worth noting that the focus here is on the 
use of UHS alone to predict HREF storm mode.  
The intent, however, is not to consider UHS in lieu 
of other (object-based) approaches, such as the 
shape and eccentricity of the reflectivity field, but 
rather to propose UHS be considered as an 
additional gridded storm-attribute HREF field that 
could provide complementary and useful 

information in the diagnosis of convection mode.  
 

 

 

 
 
 

 

Figure 8.   Based on 124 test cases, calculated Brier Score (a), bias (b), and Brier Skill Score (c).  Results given 

separately for the UHS approach for predicting storm mode based on the five HREF ensemble forecasts:  ARW, 

HRRR, NSSL, FV3, and NAM.  The number of test cases used to evaluate each is listed along the x-axis below 

the associated HREF ensemble forecast name. 

a) b) c)

BS bias BSS
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