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1. INTRODUCTION

In the immediate wake of a tornado event, there
often exists a flurry of preliminary information about the
tornado’s intensity and the locations that were impacted.
Such information is obtained from storm spotters or
local emergency management personnel (EMs), and/or
photography or videography ascertained via social
media. However, the accuracy of such information, in
terms of the exact time, location and particularly,
intensity, is often of varying degrees of quality and is
often incomplete.

Incident response personnel (i.e., first responders,
local EMs) are tasked with quickly devising and
implementing the appropriate tactical and strategic
response to emergencies, including tornadoes. Tornado
damage can be especially problematic due to 1) the
rarity of such events, 2) the expansive spatial scales
involved (which can overwhelm these services), and 3)
the variation in impacts (which can vary with tornado
intensity and population density). Therefore, access to
timely and reliable, yet preliminary, reconnaissance
information that is nationally consistent can help fill a
critical information void and guide these efforts.

Tornado intensity diagnosis, let alone prediction,
remains a challenge. The accepted method for
diagnosing tornado intensity is through utilization of the
EF-scale (WSEC 2006) in a detailed post-event damage
survey. Surveyors identify individual damage indicators
(DIs), if available, and assess the degree of damage
(DOD) incurred to the DI to estimate the wind speed at
the DI location. This process is repeated until a suitable
number of DIs have been assessed to quantify the
variation of tornado intensity along the entirety of the
tornado track, culminating in a peak EF-scale rating.
Damage surveys can take at least 24 hours to complete,
and often require several days or even weeks for events
that are more widespread or with DIs suggestive of
EF4+ damage that may require detailed forensic
analysis. Therefore, the post-event survey approach
cannot (and should not) address the immediate needs
of incident response personnel.

In the late 2000s, the National Weather Service
(NWS) deployed an upgrade to the WSR-88D network
to include super-resolution radar (Brown et al. 2005),
and starting in the early 2010s, dual-polarization radar
was introduced (e.g., Scharfenberg et al. 2005; Istok et
al. 2009).
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These enhancements allow for an improved ability
to resolve mesocyclone and tornado vortex signatures,
including tornado debris signatures. In the advent of
these newly detectable signatures arose anecdotal
evidence for relating such signatures to intuitive
assertions of tornado intensity and related impacts,
leading to the introduction of tornado impact tags in
NWS tornado warnings (NWS 2011). With the use of
WSR-88D radar data, NWS meteorologists are able to
discriminate between weaker and more intense
damage-based tornado wind speeds (Smith et al.
2020b) even without a consistent methodological
approach.

To support the effort of real-time tornado intensity
diagnosis, recent studies (e.g., Smith et al. 2020a;
2020b; 2022) have engaged in a detailed climatological
analysis of 1) peak, scan-based and event-based
WSR-88D rotational velocity (Vrot) signatures associated
with tornadoes, with 2) a characterization of the
near-storm environment of these events, as depicted by
the effective Significant Tornado Parameter (STP), and
3) the associated population density on a 1 km grid,
which are all linked to the 4) nearest-neighbor maximum
DI-based wind speed. This effort has yielded 7513
Vrot/STP/population combinations from tornadoes
occurring between 2009-2017, from which threshold
dependent empirical damage-based wind speed
distributions have been developed (Fig. 1; Smith et al.
2020a).

Figure 1. Empirical damage-based wind speed
distributions within various combinations of peak Vrot
signatures, effective STP, and population density. From
Smith et al. (2020b), their Fig. 9.
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In a general sense, these empirical distributions
should help to guide and refine the aforementioned
real-time intuition-based assertions of tornado impacts
and implied intensity in a consistent manner nationwide.
However, when applied immediately after a tornado
event on a scan-by-scan basis, these distributions may
also offer utility to address the needs of incident
response personnel. This study describes a statistical
model developed to create preliminary tornado damage
paths that include spatial depictions and variations of
damage-based wind speed. Deterministic output from
this model was subjected to verification on an
independent set of tornado events. Results from this
effort are described in the context of ongoing and future
plans.

2. METHODOLOGY

The approach developed at the time of this writing
utilizes the following methodological approaches to
develop a statistical model characterizing the estimated
spatial extent and variation of damage-based tornado
wind speeds. Three basic approaches have been taken
to develop the statistical model, including 1) use of the
Smith et al. (2020b) empirical wind speed distributions
to obtain percentile-based estimates of the maximum
wind speed near the ground, 2) use of an analytical
vortex model to obtain an estimate of the variation of
wind speed orthogonal to the tornado track, and 3) use
of the operational NWS preliminary damage path
polygon methodology (Smith and Speheger 2006) to
obtain an estimate of the damage path spatial extent.

2.1 Statistical Model

Estimates of the peak damage-based wind speed
at each WSR-88D Vrot centroid location were obtained
from the Smith et al. (2020b) empirical wind speed
distributions. The wind speed for each
Vrot/STP/population combination used a
percentile-based method, yielding 101 wind speed
values. This allows for 1) consistency when composing
deterministic depictions of wind speed along the track
by fixing the relative statistical frequency of the wind
speed across the Vrot/STP/population parameter space,
and 2) the ability to derive probabilistic depictions of
wind speed exceeding various thresholds. For this
study, we only evaluate the deterministic approach, and
the probabilistic approach, analogous to the work of
Saba et al. (2022), will be the subject of future work.

Once estimates of the peak wind speed are
obtained for point locations along the track, the next
question to address is how to depict the variation of
wind speed orthogonal to the tornado translation
direction as implied by consecutive Vrot centroid
locations. This was done by utilizing an analytical vortex
model. This model uses a set of Rankine equations,
which assume solid body rotation in the tornado core
(interior to the radius of maximum winds) and
logarithmic decay exterior to the tornado core (exterior
to the radius of maximum winds). The radius of
maximum winds was assumed to be roughly 20% of the

radius of damaging winds (i.e., 65+ mph). Lastly, the
ratio of the radial to tangential velocities was assumed
to be 2:1, consistent with the findings of Karstens et al
(2013).

An advantage of using the Rankine-based
analytical approach is the ability to depict asymmetries
in the resulting peak near-ground wind speeds as
imposed from the implied tornado translation speed.
This may better represent the physical characteristics of
the damage gradients observed at ground level as
opposed to using a more simplistic linear decay function
emanating orthogonal from the Vrot centroid location.
With that said, it is not clear whether the added
complexity of the analytical model approach results in
any additional skill in depicting near-ground wind
speeds.

Lastly, an estimate of the variation in damage path
width is needed to depict the spatial extent of damaging
winds at ground level. The approach considered thus
far is to utilize the same approach used operationally by
the NWS to generate preliminary tornado damage path
polygons for strong to violent tornadoes. These
polygons are based on the method developed by
Speheger and Smith (2006), and are intended to give an
approximate 85% elliptical confidence interval for the
depiction of the tornado track center relative to the Vrot
centroid. Future efforts may consider an alternative or
additional approach that uses historical tornado
statistics relating maximum path width to peak tornado
intensity.

Table 1. Distance criteria used for composing
operational NWS preliminary tornado damage path
polygons.  Table is from Karstens et al. (2016).

To create a grid of wind speeds, the variational
width relative to the track centerline is combined with
the distance between consecutive Vrot centroids, and
used as normalizing values for conducting distance
weighting in the interior of the track. These weights are
applied to bounding cross-sections of maximum wind
speeds obtained from the analytical vortex model (with
Vrot implied translation speed), thus revealing a
smoothed depiction of wind speed variation at ground
level. The model run time varies, depending on track
length, but in general it can be executed in under 10-15
minutes (on a laptop) with a given set of
Vrot/STP/Population data. Currently, the model grid is
configured at 20 m spacing, however, this dimension is
configurable. Future efforts may consider a slightly
larger grid spacing to ease the computational demand
associated with long-tracked tornado events.
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2.2 Verification

To explore the feasibility of providing detailed
preliminary estimates of tornado wind speeds at ground
level using the method just described, peak observed
damage-based wind speeds from 6425 DIs associated
with 115 tornadoes occurring between 2020-2022 were
obtained from the NWS Damage Assessment Toolkit
(DAT; Camp et al. [2014]). These events were selected
based on the availability of DIs that were present in the
DAT for each event (Smith et al. 2022). As discussed in
Smith et al. (2020a), a critical assumption in using DI
wind speeds is the notion that such observations
represent the maximum wind speed that occurred at the
DI location. In reality, damage-based wind speeds
represent 1) a lower-bound to the maximum wind
speed, and 2) an expert-assessed estimate of the peak
wind speed (i.e., not physically measured). With that
said, ascertaining the true maximum wind speed at
various points along a tornado track is an impossible
endeavor. Even in situations where instrumentation has
fortuitously sampled tornadoes, such instruments often
do not survive the harsh, debris-ridden environment of a
tornado. Thus, damage-based wind speeds remain the
only feasible representation of the true wind speeds that
are available in the current era. In the future, it would
be advantageous to incorporate additional post-event
methods of ascertaining tornado wind speeds as such
methods become available (LaDue et al. 2022).

As previously mentioned, only the deterministic
percentile-based wind speed tracks were evaluated in
this study. Two approaches were taken to evaluate the
quality, and to some extent the value, of the statistical
model. The first is an evaluation of the variation in raw
error between the model diagnostic maximum wind
speed and the observed, damage-based DI wind speed.
This was done for selected percentiles to evaluate the
variation in error spanning the entirety of the
percentile-based tracks. The second is an evaluation of
the variation in diagnostic reliability to address the
question of how good the statistical model is at depicting
winds that were observed. This was evaluated in wind
speed ranges corresponding to the EF-scale categories.

Both of these evaluations are conditional upon the
statistical model depiction of wind speed > 0 mph. In
addition, both of these evaluations were performed at
each DI grid point, as well as evaluating the maximum
diagnostic wind speed from the model within 500 m and
1000 m radii (i.e., neighborhoods) of the DI grid point.
These latter two approaches were done to assess the
value of the model’s ability to depict wind speeds
associated with DIs in which intense to violent damage
occurred (i.e., EF3+), thus allowing some forgiveness
for depicting strong winds in the vicinity of these DIs in a
manner that is perhaps similar to its intended usage in a
preliminary sense. In an ideal scenario, the verification
technique would employ the same observational data
(polygons as opposed to DI points) as used in Saba et
al. (2022). However, such data were available for only a
limited number of the 115 tornadoes used in this study,
and thus, this type of analysis could not be conducted.

3. RESULTS

Figure 2. Violin plots of raw diagnostic wind speed error
(mph; model estimated - damage estimated) for
selected percentile-based tracks, evaluated (a) at each
DI grid point, within (b) 500 m, and (c) 1000 m of each
DI grid point.

The variation in raw diagnostic wind speed error
(Fig. 2) demonstrates a general (and expected) trend of
under estimation for low percentile tracks and over
estimation for high percentile tracks. The error
distributions center near zero around the 90th, 50th, and
between the 25th and 50th percentile tracks when
considering the maximum diagnostic wind speed
depicted at each DI grid point (Fig. 2a), within 500 m of
the DI (Fig. 2b), and within 1000 m of the grid point (Fig.
2c), respectively. In general, the error distributions
exhibit an interquartile range of approximately 30 mph,
which is about the range associated with each EF-scale
category. The interquartile ranges increase with the
lowest/highest percentile tracks, and decrease with
larger neighborhoods.

From the results in Fig. 2, three percentiles were
chosen for further evaluation in terms of diagnostic
reliability of maximum wind speeds. These include the
50th, 75th, and 97th percentiles, which span the
under/over diagnosis biases evident in Fig. 2 across the
various verifying neighborhoods, with a slight subjective
favoring of over-diagnosis due to the asymmetric
penalty that is commonly associated with
decision-making under uncertainty (Doswell 2004).
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Figure 3. Violin plots of diagnostic reliability evaluated
for the 50th percentile tracks (a) at each DI grid point,
(b) within 500 m, and (c) within 1000 m of each DI grid
point.

The variation in diagnostic reliability for the 50th
percentile tracks (Fig. 3) shows that for lower-range
maximum wind speeds (i.e., EF0-EF1), the model is
able to depict wind speeds at the DI grid points
accurately (Fig. 3a). However, as DI wind speeds
increase, the 50th percentile track does not produce a
corresponding increase in maximum winds, but more or
less similar lower-end wind speeds. An under-diagnosis
bias for the 50th percentile tracks is also evident in Fig.
2a. This linear bias holds when considering the
maximum diagnostic wind speed within 500 m (Fig. 3b)
and 1000 m (Fig. 3c) but with an expanding upper tail to
the distributions, resulting in a slight over/under
diagnosis bias for lower/upper range wind speed
distributions, respectively, and thus, total error
distributions centered near zero (Figs. 2b and 2c). A
notable upward shift of the distributions corresponding
to DI wind speeds in the EF4 range can be noted as
well in Figs. 3b and 3c, but the under-diagnosis bias is
still present. This result implies that the 50th percentile
tracks are able to depict lower-end maximum wind
speeds quite accurately, particularly along the edges of
the damage path where maximum wind speeds typically
peak in the lower-range of the EF-scale, regardless of
tornado intensity.

Figure 4. As in Fig. 3, except for the 75th percentile
tracks.

The variation in diagnostic reliability for the 75th
percentile tracks (Fig. 4) shows trends similar to those in
Fig. 3. but with accuracy for middle-range maximum
wind speeds (i.e., EF2-EF3) at the DI grid points (Fig.
4a). Given the linear bias, there is an over-diagnosis of
lower-range maximum wind speeds, and an
under-diagnosis of higher-range maximum wind speeds
at DI grid points, resulting in a very slight
under-diagnostic bias (Fig. 2a). The most accurate
depiction of maximum wind speeds occurs in the EF1
range at the DI grid points (Fig. 4a), EF2 range within
500 m of the DI grid point (Fig. 4b), and EF3/EF4 within
1000 m of the DI grid point (Fig. 4c). As the range of
maximum wind speeds increases, the 75th percentile
tracks tend to shift to an over-diagnostic bias (Figs. 2b
and 2c) as the distributions in Figs. 4b and 4c shift
upward, relative to those in Fig. 4a. These results
support the notion that the 75th percentile tracks are
most accurate at depicting middle-range maximum wind
speeds at ground level, with perhaps some utility for
upper-range maximum wind speeds when considering a
large neighborhood.
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Figure 5. As in Fig. 3, except for the 97th percentile
tracks.

Finally, the variation in diagnostic reliability for the
97th percentile tracks (Fig. 5) shows trends similar to
those evident in Figs. 3 and 4. Similar to the 75th
percentile tracks, the 97th percentile tracks exhibit
accuracy in the EF1 range at the DI grid points (Fig. 5a),
EF2 range within 500 m of the DI grid points (Fig. 5b),
and EF3/EF4 range within 1000 m of the DI grid points
(Fig. 5c). In general, an over-diagnostic bias is evident
across all verifying neighborhoods in Fig. 2, although
the 97th percentile distribution in Fig. 2a is centered
very near zero. Comparing the distributions in the DI
wind speeds in the EF3/EF4 range from the 75th and
97th percentile tracks, it is evident that the distributions
from the 97th percentile tracks have a bit less spread,
but at the expense of the aforementioned
over-diagnostic bias in general. Thus, the 97th
percentile tracks show accuracy for upper-range
maximum wind speeds, but limited utility beyond that.

Example tracks for the 50th, 75th, and 97th
percentiles are given in Figs. 6, 7, and 8 for three
different tornado events in the evaluation dataset.
These examples give a visual depiction of the
representativeness of each track relative to the DIs
present for each event and the neighborhoods used in
this study.

4. DISCUSSION AND FUTURE WORK

The primary goal of this effort is to characterize the
uncertainty of potential tornado intensity within a time
frame that addresses the needs of incident response

personnel. The results indicate that the present
configuration of the statistical model has an ability to
depict the variation of peak tornado intensity at ground
level within approximately +/- 15 mph (i.e.,
approximately 1 EF-scale wind speed range) at varying
neighborhoods from verifying DIs, when considering
three deterministic outputs under a persistent linear
diagnosis bias present for each track. To align the
aforementioned goal and the results of this work with
ongoing efforts occurring within the NWS to deliver
similar preliminary characterizations of event
magnitude/intensity (Waldstreicher et al. 2018), the
three deterministic outputs can be categorized in the
following manner.

1) Best-case scenario: 50th percentile track.
Accuracy for lower-range maximum wind
speeds but a low bias for depicting middle- and
upper-range maximum wind speeds.

2) Most-likely scenario: 75th percentile track.
Accuracy for middle- and upper-range
maximum wind speeds, but with a high bias for
depicting lower-range maximum wind speeds,
and a slight low bias for depicting upper-range
maximum wind speeds.

3) Worst-case scenario: 97th percentile track.
Accuracy for upper-range maximum wind
speeds, but with a high bais for depicting low-
and middle-range maximum wind speeds.

These three percentiles were chosen to span the
under/over diagnosis biases evident in Fig. 2 across the
various neighborhoods from verifying DIs, with a slight
subjective favoring of over-diagnosis due to the
asymmetric penalty that is commonly associated with
decision-making under uncertainty. The variation in
diagnostic reliability results indicates that the 50th and
75th percentile tracks offer the best utility in estimating
peak near ground wind speeds, on the whole, whereas
the 97th percentile track is of limited additional value
except in events in which upper-range maximum wind
speeds occur.

Regardless of the subjectivity introduced to favor a
slight over-diagnosis bias, it is interesting that the
deterministic output that characterizes the uncertainty
favors higher percentile values (50, 75, and 97) as
opposed to percentiles that are statistically centered on
the empirical distributions (e.g., 25, 50, 75). The most
likely explanation for this effect is the process of adding
spatial and temporal dimensionality to the empirically
derived estimates of peak near-ground wind speed.
This process necessarily introduces depictions of
near-ground winds that are of lesser magnitude other
than a very narrow corridor where the peak winds are
represented at ground level. This result could serve as
a basis for further investigating the representations of
damage width, and perhaps the analytical model
configurations. Future efforts will also include an
investigation into probabilistic depictions of exceeding
various wind speed thresholds, likely those
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Figure 6. Example (a) 50th, (b) 75th, and (c) 97th percentile tracks for a tornado event on 3 May 2021. Colors
correspond to wind speeds at ground level, using EF-scale categorical thresholds. Triangles represent DIs available
for this event, colored using the same scheme as the model wind speeds. The 500 m and 1000 m neighborhoods
used in this study are provided in the lower-right corner of each panel as a reference.
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Figure 7. As in Fig. 6, except for a tornado event on 12 April 2022.
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Figure 8. As in Fig. 6, except for a tornado event on 26 March 2021.
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corresponding to the EF-scale categories. Saba et al.
(2022) investigated such depictions for a limited sample
of events, and thus, this approach will be expanded to
include the 115 events used in the present work.
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