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ABSTRACT 
 

Objective forecast verification was conducted for the first time in near real-time during the 2012 
NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (2012 SFE). One of the 
daily activities was to test the value of verification metrics by comparing the scores to subjective 
impressions of the participants.  For this purpose, 1-km simulated reflectivity from high-resolution 
model and ensemble guidance was selected for examination.  The evaluation was conducted via web 
pages using spatial plots for distinct time frames as well as a table which summarized statistical results.  
Feedback from the five-week period of the 2012 SFE indicated that the “neighborhood” techniques 
applied were more useful than grid point verification methods in the evaluation process, with the 
fractions skill score often rated as the most preferred metric.    

_______________ 
 

1. Introduction 
 
 The Storm Prediction Center (SPC) and 
National Severe Storms Laboratory (NSSL) have 
jointly conducted the Spring Forecast Experiment 
(SFE) every spring season to test new tools and 

techniques for improving the prediction of 
hazardous convective weather.  Both Kain et al. 
(2003) and Clark et al. (2012b) provide a detailed 
history on the annual SFE from the first official 
program in 2000 through recent years after the 
move to the NOAA Hazardous Weather Testbed 
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(HWT) at the National Weather Center.  Over the 
course of this time frame, the ultimate goal has been 
to foster collaboration between researchers and 
operational forecasters with the hope of transferring 
promising ideas from research into operations.    In 
order to facilitate this process, evaluations of 
experimental model and human forecasts have 
consistently been a part of the daily activities, with 
2012 SFE being no different.   In previous SFEs, 
however, these assessments were done solely in a 
subjective fashion with objective metrics computed 
post-experiment (e.g., Kain et al. 2008). 
 During the five-week period of the 2012 SFE 
(M-F; May 7 – June 8), objective verification of 
high-resolution model forecasts was conducted 
locally for the first time in near real-time.  Because 
of its relevance to severe weather, simulated 1-km 
above ground level (AGL) reflectivity was evaluated 
using several convection-allowing models (CAMs) in 
both a deterministic and ensemble system 
framework.  The focus in the current investigation was 
placed on testing the utility of a few selected verification metrics 
on high-resolution data by comparing those statistics to 
subjective evaluations from the participants.   The goal is to 
refine the most useful approaches and measures for 
subsequent trials in the HWT and eventual 
application across the community to better assess 
high-resolution model performance.   

 
2. Data and Methodology 
 
a. Data 
 
 The performance of many operational and 
experimental CAMs was explored rigorously during 
the 2012 SFE.  All forecasts considered in the 
evaluation had grid spacing of about 4-km, were 
initialized daily at 00 UTC, and covered the 25 
weekdays from May 7th – June 8th. The verification 
of hourly output of 1-km simulated reflectivity was 
limited, however, to a 20-hour period (16-12 UTC) 
which corresponded to the time frame that 
experimental human forecasts were valid.  These 
daily evaluations were also restricted to a mesoscale 
“area of interest” for possible severe convection.  In 
order to define the spatial extent of the small 
domain, surface weather stations listed in Table 1 
served as movable center points for locations across 
the United States.  
 
 
 

Table 1.  Description of the surface weather stations selected for each 
of the 25 days as center-points during 2012 SFE.  All of the daily 
evaluations were restricted to a mesoscale “area of interest” for possible 
severe convection.  This small domain was movable to locations in the 
eastern and central United States.  Consult Fig. 1 for an example plot 
showing the spatial extent. 
   

 
 
1) DETERMINISTIC MODELS AND ENSEMBLES 
 

Table 2 provides a description of the two 
deterministic models used in the examination.  
These models were chosen based on ease of 
accessibility and to compare a relatively new 4-km 
model to one that has been examined at the SPC for 
several years. One model was the WRF-ARW 
version produced in real time at NSSL (hereafter 
referred to as NSSL-WRF; Sobash et al. 2011).  
Since late 2006, forecasts out to 36-hours from this 
4-km CAM have been directly transmitted to SPC.  
More recently in 2011, National Centers for 
Environmental Prediction (NCEP) began running 
the Nonhydrostatic Multiscale Model on a rotated, 
Arakawa B-grid (NMMB) in the North American 
Mesoscale (NAM) slot, replacing the WRF-NMM 
framework.  One-way, higher resolution nests are 
possible in this new framework using lateral 
boundary conditions (LBCs) from the 12-km 
NMMB parent.  A 4-km nest (hereafter referred to 
as NAM-Nest) was used for comparison during the 
2012 SFE.   

Center-point 
Date[ YYMMDD] 3-char ID Station Name, State 

120507 BMQ Burnet, TX 
120508 SJT San Angelo, TX 
120509 AGS Augusta/Bush, GA 
120510 SAT San Antonio, TX 
120511 SAT San Antonio, TX 
120514 DRT Del Rio, TX 
120515 RAC Racine, WI 
120516 RUT Rutland State, VT 
120517 GBD Great Bend, KS 
120518 MBG Mobridge, SD 
120521 CDS Childress, TX 
120522 MBG Mobridge, SD 
120523 BVN Albion Municipal, NE 
120524 RGK Red Wing, MN 
120525 ICT Witchita, KS 
120528 ORD Chigao O'Hare, IL 
120529 OKC Oklahoma City, OK 
120530 END Enid/Vance AFB, OK 
120531 MSL Muscle Shoal, AL 
120601 AVC South Hill/Meckl, VA 
120604 BZN Bozeman, MT 
120605 LGC La Grange, GA 
120606 LBF North Platte, NE 
120607 TIF Thedford/Thomas, NE 
120608 2WX Buffalo, SD 
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Table 3 describes configuration specifics for 
three different storm-scale ensembles considered in 
investigating ensemble probability thresholds of 
simulated reflectivity.  As had been the case since 
2007, the University of Oklahoma (OU) Center for 
Analysis and Prediction of Storms (CAPS) supplied 
the SFE with data from their 4-km grid length 
storm-scale ensemble forecast (SSEF) system.  The 
SSEF employs three dynamical cores (ARW, NMM, 
ARPS) and is a multi-initial condition (IC), multi-
lateral boundary condition (LBC), and multi-physics 
system with 12 core members included in the post-
processed ensemble products (Clark et al. 2012a).  
As a practical alternative, SPC developed the storm-
scale ensemble of opportunity (SSEO) in 2011 by 
processing five existing deterministic CAMs (Jirak et 
al. 2012).  Although SPC has limited control over its 
configuration, the SSEO remains attractive because 
of the minimal computational costs involved.  
Finally, a direct feed to SPC from the Air Force 
Weather Agency (AFWA) allowed the testing of 
their operational, 10-member 4-km WRF-ARW 
ensemble.  The multi-IC/LBCs of the AFWA 
storm-scale ensemble are comprised from various, 
downscaled global model forecasts (Clark et al. 
2012a).   

 
Table 2.   Configuration of the 00Z initialized deterministic CAMs used 
in 2012 SFE study. 

 

Model 
 Grid 

Spacing 
Vert. 

Levels 
Time 
Step 

Fcst. 
Length 

PBL Micro  

NSSL-WRF 4-km 35 24 s 36 h MYJ WSM6 

NAM-Nest 4-km  60 8.89 s 60 h MYJ Ferrier 

 
Table 3.   Configuration of the 00Z initialized storm-scale ensembles 
used in 2012 SFE study. 
 

Ensemble 
 Grid 

Spacing 
Core # 

Members 
Fcst. 

Length 
Reference 

SSEO 4-5 km 7 36 h 
Jirak et al. 

(2012) 

AFWA 4-km  10 72 h 
Clark et al. 

(2012a) 

SSEF 4-km 12 36 h 

Clark et al. 
(2012a); 

Kong et al. 
(2012) 

 

 

2) VERIFICATION DATA 
 

 Verification of high-resolution reflectivity 
forecasts was performed using gridded radar 
observations of mosaic hybrid-scan reflectivity from 
the National Mosaic and Multi-Sensor QPE (NMQ) 
System (Zhang et al. 2011).  Given the very fine 

resolution (0.01x0.01 degree) of the NMQ, a direct 
one-to-one comparison was achieved through 
interpolation of all the data onto common GEMPAK 
(GEneral Meteorological PAcKage; desJardins et al., 
1991) grids (one for deterministic model evaluation 
and one for the ensemble component.  For the 
statistical analysis, a mask was also applied to ignore 
grid points outside of the contiguous United States 
for those days when the mesoscale “area of interest” 
included such regions.  
 
b.  Methodology: Verification Metrics and Techniques 
 
 The verification process required creation of 
forecast- and observed-storm grid points from the 
reflectivity by specifying a threshold, in this case ≥40 
dBZ.    A traditional (i.e., “at-the-grid point”) method 
was used as one way for evaluating the deterministic 
CAMs.  In this case, a 2x2 contingency table (Wilks 
2006) was constructed from the binary (yes/no) event 
grids.  After counts of hit, misses, false alarms, and 
correct nulls were obtained each forecast hour, some 
standard verification metrics were computed (Critical 
Success Index [CSI] and Gilbert Skill Score [GSS] – 
also known as Equitable Threat Score).   
 Validating “grid-point” to “grid-point” is 
inherently problematic, though, when considering the 
occurrence of a relatively rare weather phenomenon 
(e.g., thunderstorm; Ebert 2009).   Instead, a better 
technique to account for spatial uncertainty relies on 
setting a radius of influence (ROI) to incorporate a 
“neighborhood” around each grid point.  A 40-km 
ROI was used for the current investigation to be 
consistent with SPC Convective Outlooks (i.e., within 
25 miles of a point). Thus, the goal was to evaluate 
measures that account for spatial uncertainty in the 
forecasts.   
   Roberts and Lean (2008) and Schwartz et al. 
(2010) described a process for calculating 
“neighborhood” fractional probabilities from a single 
model.  By applying their formula to the NSSL-WRF 
and NAM-Nest at each grid point, the number of 
grid boxes with 1-km AGL simulated reflectivity ≥ 40 
dBZ within a 40-km ROI was divided by the total 
number of boxes within that “neighborhood”.  As a 
result, a smoother field is obtained which shows 
predicted coverage of storms as opposed to precise 
placement or intensity of localized features.  The 
same technique was then utilized to form 
corresponding probabilistic fields for the 
observations.   For the fractions skill score (FSS; 
Schwartz et al. 2010), fractional coverage values of 
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the observations and models were directly compared .  
Alternatively, CSI was calculated at a threshold of 
10% for comparison among the models and 
ensembles.     
  Ensemble probabilities of an event occurrence 
were examined using the SSEO, AFWA, and SSEF 
systems. In this case, the probabilities were computed 
as the fraction of members with one or more grid 
points meeting or exceeding the threshold (40 dBZ) 
within the ROI (40-km).  Harless (2010) introduced 
this concept as a binary neighborhood ensemble 
probability (BNEP) and found it to be skillful in 
quantifying forecast uncertainty associated with 
severe weather outbreaks.  Similar to her work, a 2-D 
Gaussian kernel operator was also utilized with the 
weighting function set to 10 grid points, thereby 
effectively spreading the response to a 40-km 
distance.   This acted to smooth the ensemble 
probabilities and create spatial probability 
distributions for the observed events given that there 
was only one source of radar data (i.e., 100% 
probability of occurrence).  Again, an objective 
evaluation was performed by using CSI and FSS each 
forecast hour for the storm-scale ensembles.    
 

3. Results 
 

a.  2012 SFE Website 
 

 The afternoon evaluation component of the daily 

activities in the HWT sought participant feedback in 
comparing the verification metrics with their 
subjective impressions of the high-resolution model 
forecast performance. To facilitate a simple and quick 
diagnosis, the various forecast metrics were available 
on the 2012 SFE website 
(http://hwt.nssl.noaa.gov/Spring_2012/) for next-
day evaluations.    Time-matched images of forecasts 
and observations were created and displayed on web 
pages with the option to overlay the computed 
statistics.  In order to illustrate this functionality, 
example snapshots highlighting ensemble and 
deterministic model  plot comparisons are presented 
in Figs. 1 and 2, respectively.  
  In addition, the SFE participants were able to get 
a summary of the hourly objective results for a 
particular day in a tabular format.  The table creation 
(Fig. 3) was driven on a separate web page by the 
choice of a date, verification method summary, and 
verification metric selected from a drop down menu.  
To cover an overall analysis for all five weeks, another 
summary table was also made available for examining 

trends across multiple days (Fig. 4), which was 
offered through dynamic calculation in PHP. 
 

 
 
Figure 1. Sample spatial plots from 2012 SFE website illustrating the 
ability to overlay verification metric scores for storm-scale ensemble 
guidance.  The ensemble probabilistic forecasts for 1-km simulated 
reflectivity are valid at 23Z on June 1st, 2012 for a mesoscale “area of 
interest” centered over south-central VA.  The upper-left panel shows 
the CAPS SSEF, the upper-right shows the SPC SSEO, the lower-left 
displays the AFWA ensemble, with the observations of hybrid-scan 
reflectivity from the NMQ system located in the lower right.  Beneath 
each forecast, the corresponding CSI and FSS are displayed as well.   
The figure is annotated to highlight  the date, forecast time, and type of 
display.   

 

 
Figure 2.  Similar to Fig. 1 except for deterministic guidance from the 
NSSL-WRF (left panels) and NAM-Nest (middle panels) models.  The 
raw 1-km AGL simulated reflectivity is displayed in the top row of plots 
while probabilities from a fractional “neighborhood” approach are given 
in the bottom row.  The verifying observations on the far right again 
come from the NMQ system.  Besides computing CSI for verification at 
the grid point, the traditional verification metrics displayed in the top 
row also include Gilbert Skill Score (GSS). 

http://hwt.nssl.noaa.gov/Spring_2012/
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Figure 3.  Sample composite of several tables created from 2012 SFE 
website which summarizes daily verification metrics for 1-km AGL 
simulated reflectivity.   The table is created from a variety of user 
options: choice of a date, the type of verification method summary, and 
selection from a drop down list of skill scores (CSI being the default).   
Skill score results are binned by forecast hours (columns) from 16Z-12Z 
and models/ensemble systems (rows).  The three tables displayed in this 
example from June 1st, 2012 are CSI values for grid point comparison of 
deterministic models (top), FSS values using a fractional 
“neighborhood” method of deterministic models (middle), and FSS 
values from an evaluation of storm-scale ensemble probabilities.  Again, 
annotation is used to emphasize some options and functionality.   

 

 
Figure 4.  Similar to Fig. 3 except for tables created from the 2012 SFE 
website showcasing multiple day statistical overview.   In this case, the 
daily accumulated scores from each day are presented, with the right 
most column representing the final outcome accumulated over the 
entire twenty five days of the 2012 SFE (5/7/2012 – 6/8/2012).    

b.  Multiple Day Forecast Verification Metrics 
  
 Figure 5 shows the accumulated multiple day 
forecast verification metrics for simulated reflectivity.  
The FSS from all three storm-scale ensemble systems 
(SSEO, AFWA, SSEF) surpassed the skill value of 0.5 
with the SSEO even exceeding 0.6.  The accumulated 
CSI results ranged from a little above 0.3 for AFWA 
to slightly over 0.4 with SSEO (Fig. 5).  The skill 
scores were much lower for the deterministic CAMs.  
Still, a noticeable distinction existed as the fractional 
“neighborhood” CSI and FSS revealed higher values 
than the traditional, grid-point CSI and GSS.  
Between the latter two metrics, grid-point GSS was 
slightly worse but both showed values near zero.   
When comparing the verification metrics amongst the 
deterministic CAMs, the NSSL-WRF had higher 
values than the NAM-Nest.  
 Similar multiple-day statistics by forecast hour are 
displayed in Fig. 6.  From this perspective, the 
separate panels present trend lines from 16-12 UTC 
for all of the methods and verification metrics 
investigated.   Results indicated that the maximum 
skill often occurred in mid-afternoon when 
convective activity was generally at its peak across the 
mesoscale “area of interest”.  Generally, the storm-
scale ensemble performance peak was higher and 
broader than the deterministic CAMs.  For the latter, 
all four metrics showed low skill scores for all 
forecast hours with the fractional “neighborhood” 
approach showing the highest value near 0.25 at 20 
UTC (middle right panel in Fig. 6).   When comparing 
the two deterministic CAMs, the NSSL-WRF usually 
performed better for most forecast hours.   With 
respect to the ensembles, the SSEO FSS revealed the 
highest skill values ranging from 0.6 to 0.7 (bottom 
right panel in Fig. 6).   
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Figure 5.  Multiple day accumulated skill scores for 1-km AGL 
simulated reflectivity from the 25 days (5/7/2012 – 6/8/2012) of the 
2012 SFE.  The following verification metrics are presented in this 
graph: CSI/GSS for traditional grid-point comparisons of deterministic 
models, CSI/FSS for fractional “neighborhood” comparisons of 
deterministic models, and CSI/FSS for evaluation of storm-scale 
ensemble systems.  It should be noted that the AFWA ensemble data 
was unavailable for three days with the CAPS SSEF ensemble data 
missing for one.     

 

 
Figure 6.  2012 SFE multiple day accumulated skill scores by forecast 
hour for 1-km AGL simulated reflectivity.   Multiple panels display 
diurnal trend lines for deterministic model evaluations at the grid point 
[CSI (top left) and GSS (top right)] and from a fractional 
“neighborhood” approach [CSI (middle left) and FSS (middle right).  
The bottom two panels show forecast hour trend lines for storm-scale 
ensemble metrics [CSI (left) and FSS (right)].    

c.  Daily Distribution of Forecast Verification Metrics 
 
 The findings thus far have been accumulated 
over the entire five week period of the 2012 SFE.   
To get an indication of the variability in daily skill 
scores, separate box-and-whisker plots for the 
deterministic (Fig. 7) and ensemble (Fig. 8) forecasts 
were produced.  All of the percentile rankings for 
grid-point CSI and GSS were close to zero (top panel 
in Fig. 7).  The distribution in FSS displayed a wider 
range (bottom panel in Fig. 7) and a predominant 
upward shift in the distribution of the NSSL-WRF 
results compared to the NAM-Nest.  An examination 
of CSI and FSS from the ensemble in Fig. 8 suggests 
a substantial overlap amongst all three storm-scale 
ensembles.  Nevertheless, AFWA subjectively 
showed a tendency to be an outlier and have more 
forecasts with lower scores, this being implied by the 
lower 25th percentile value for FSS.   
 

 
Figure 7.  Box and whisker plots of daily accumulated skill scores for 1-
kmAGL simulated reflectivity from deterministic model solutions.  The 
top (bottom) row presents results from the traditional grid-point 
(“neighborhood”) method.  The whiskers correspond to the 10th and 
90th percentile rankings from the 25 days during 2012 SFE.  
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Figure 8.  Box and whisker plots of daily accumulated skill scores for 1-
km AGL simulated reflectivity from storm-scale ensemble systems.  The 
top (bottom) row presents results from the FSS (CSI).  The whiskers 
correspond to the 10th and 90th percentile rankings for 2012 SFE but the 
sample size is smaller for the AFWA (22 days) and CAPS SSEF (24 
days) systems.  

 
d.  Participant Feedback 
 
 Another major purpose of the research was to 
compare the participant feedback to the objective 
results for 1-km AGL simulated reflectivity.   Figures 
9 and 10 present tallies gathered from the responses 
on 23 days of forecast verification technique/metric, 
respectively.   While there were occasional 
differences, subjective impressions typically matched 
objective results during the 2012 SFE daily evaluation 
activity.   In particular, the NAM-Nest was frequently 
rated “Worse” to “Much Worse” than the NSSL-
WRF, and the SSEO forecasts received the most 
ratings of “Good” (Fig. 9). One of the discrepancies 
was the subjective ranking of the SSEF with respect 
to the AFWA ensemble.  Here, AFWA was rated 
“Good” more often than SSEF and rated “Poor” or 
“Very Poor” less often than SSEF (Fig. 9) while the 
objective metrics preferred the SSEF over the 
AFWA.   
 Most importantly, the forecast verification 
metrics with the deterministic CAMs “Agreed” to 
“Strongly Agreed” with the subjective impressions 
more so for the fractional “neighborhood” technique 
than the grid point approach (Fig. 10).    With regard 
to the best metric from the deterministic forecasts, 
the 13 day tally for fractional “neighborhood” FSS 

indicated that it was preferred over the other metrics.  
Finally, feedback suggested that the ensemble CSI 
and FSS from the BNEP method was consistent with 
the subjective impressions of the participants for well 
over half of the five week period.     
 

 
Figure 9.  Participant feedback tallies gathered during 2012 SFE daily 
activity evaluation.  The results obtained from the two survey questions 
covered subjective comparisons of 1-km reflectivity from deterministic 
models (top graph) and storm-scale ensemble systems (bottom graph).   
The wording of the questions is given as: “Deterministic Reflectivity: 
Subjectively compare the model generated forecasts during 16-12UTC 
from the NMMB Nest to the NSSL-WRF” and “Ensemble Reflectivity: 
Subjectively rate the model generated forecasts during 16-12UTC 
ranging from Very Good to Very Poor”.  The sample size was 23 since 
no evaluations were performed on Memorial Day (5/28/2012) nor the 
very last day (6/8/2012) of the 2012 SFE. 
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Figure 10.  Same as in Fig. 9 except for survey questions relevant to 
assessing the forecast verification metrics examined from the 
deterministic models (top two graphs) and storm-scale ensemble 
systems (bottom graph).   The wording of the questions is given as: 
“Deterministic Reflectivity: Do the objective metrics agree with your 
subjective impressions of forecast skill? Were the fractional 
neighborhood metrics better objective measures than grid point metrics 
on this day?”, “Deterministic Reflectivity: Which objective metric best 
agreed with perceived forecast skill on this day?”, and “Ensemble 
Reflectivity:  Do the objective metrics agree with your subjective 
impressions of forecast skill?”.   
 

4. Summary and Conclusions 
 
 SPC conducted objective verification of high-
resolution model forecasts of 1-km AGL simulated 
reflectivity during the 2012 SFE in near real-time.  
This provided the opportunity to assess the utility of 
selected verification metrics in relation to subjective 
evaluations of model performance.  Time-matched 
spatial plots of forecasts and observations were 
displayed on the SFE 2012 webpage for visual 
comparison.   Unlike prior years, however, objective 
skill scores were also calculated for each forecast 
time period and overlaid with the appropriate 
images as well as included in table summaries.  
 A major finding was that the “neighborhood” 
objective measures best agreed with the subjective 
evaluations for the majority of the five week period.  
In particular, feedback from participants indicated 
that utilizing a “neighborhood” technique was usually 
better than evaluating high-resolution models using 

grid point methods.  The FSS was often rated the 
most preferred metric, with the accumulated daily and 
multiple daily results continuously showing the 
highest values.  The skillful scores (values over 0.5) 
from the SSEO, SSEF, and AFWA indicate the 
usefulness of a probabilistic approach through the use 
of ensembles.  Future plans for the 2013 SFE include 
possibly incorporating more probability thresholds to 
CSI, allow for timing uncertainty between the 
forecasts and observations, and exploring the use of 
different ROI. 
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