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ABSTRACT: As part of NOAA’s Hazardous Weather Testbed Spring Forecasting Experiment (SFE) in 2020, an interna-
tional collaboration yielded a set of real-time convection-allowing model (CAM) forecasts over the contiguous United
States in which the model configurations and initial/boundary conditions were varied in a controlled manner. Three model
configurations were employed, among which the Finite Volume Cubed-Sphere (FV3), Unified Model (UM), and
Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model dynamical cores were repre-
sented. Two runs were produced for each configuration: one driven by NOAA’s Global Forecast System for initial and
boundary conditions, and the other driven by the Met Office’s operational global UM. For 32 cases during SFE2020, these
runs were initialized at 0000 UTC and integrated for 36 h. Objective verification of model fields relevant to convective fore-
casting illuminates differences in the influence of configuration versus driving model pertinent to the ongoing problem of
optimizing spread and skill in CAM ensembles. The UM and WRF configurations tend to outperform FV3 for forecasts of
precipitation, thermodynamics, and simulated radar reflectivity; using a driving model with the native CAM core also tends
to produce better skill in aggregate. Reflectivity and thermodynamic forecasts were found to cluster more by configuration
than by driving model at lead times greater than 18 h. The two UM configuration experiments had notably similar solutions
that, despite competitive aggregate skill, had large errors in the diurnal convective cycle.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Model comparison;
Model evaluation/performance

1. Introduction

Each spring since the mid-2000s the NOAA Hazardous
Weather Testbed has hosted its annual Spring Forecasting
Experiment (SFE; Kain et al. 2003; Clark et al. 2012; Gallo
et al. 2017; Clark et al. 2020), which runs for five weeks and
focuses in part on evaluating the performance of state-of-
the-art convection-allowing models (CAMs) in forecasting
severe convective storms. A wide array of government and ac-
ademic units contribute daily real-time operational and exper-
imental CAMs to the SFE, and since 2016, most of these
CAMs have been incorporated into the Community Lever-
aged Unified Ensemble (CLUE; Clark et al. 2018) framework
to enable systematic subjective and objective comparisons.
Such comparisons reveal the relative strengths and weak-
nesses associated with various CAM configuration choices
and facilitate productive dialog between model developers
and operational users.

As described in [Roberts et al. (2020, hereafter R20)], eval-
uations in recent SFEs have consistently noted that most
CAM ensembles are quite underdispersive with respect to

forecasts of convective storms (e.g., their coverage, location,
and intensity). A fundamental issue regarding the design of
CAM ensembles in recent years has been the utility of diverse
model configurations, initial conditions (ICs), boundary con-
ditions (BCs), and other approaches (e.g., time-lagging and
stochastically perturbed parameterizations) for increasing
spread and thereby achieving a more appropriate spread–skill
relationship. In 2017, the National Centers for Environmental
Prediction (NCEP) implemented the High Resolution En-
semble Forecast (HREF; Roberts et al. 2019) system as its
first operational CAM ensemble. The HREF is an ensemble
of opportunity composed of highly diverse members with dif-
ferent dynamical cores, physics parameterizations, ICs/BCs,
and time lagging. Although this diversity has yielded benefi-
cial spread in forecasts of convective storms (R20), HREF’s
limited membership size does not include most possible com-
binations of its constituent ICs/BCs and model configurations,
which in turn limits our ability to discern the relative influen-
ces of those attributes on ensemble spread. Formal research
over the past decade has explored the problem of optimizing
CAM ensemble design (e.g., Romine et al. 2014; Gasperoni
et al. 2020; Johnson and Wang 2020) and the benefits of di-
verse CAM model configurations (e.g., Johnson et al. 2011;
Clark 2019; Loken et al. 2019), providing valuable insights to
guide developers. However, the CAM ensemble members in
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these studies that represented IC and/or BC uncertainty used
perturbations based on a single model (e.g., from an ensemble
Kalman filter), rather than ICs and BCs from multiple distinct
parent models like HREF. In this study, we analyze a suite of
experiments with ICs and BCs from two independent analysis
systems, representing the type of IC/BC diversity typically
found in ensembles of opportunity.

The aforementioned barriers to discerning impacts from
membership choices in the context of ensembles of opportu-
nity like HREF motivated an internationally coordinated ex-
periment for SFE2020 (Clark et al. 2021) which we describe
in this paper. Our study leverages a more controlled suite
of real-time CAM runs, which notably includes the first
convection-allowing runs (to the authors’ knowledge) of the
Met Office Unified Model (UM; Cullen 1993) to be driven by
ICs and BCs from an operational American numerical weather
prediction (NWP) model. Although several facets of our experi-
mental design are novel for the systems considered herein, the
European NWP research community has explored the impact
of diverse driving models for CAMs during the past decade,
particularly in the context of Deutscher Wetterdienst’s convec-
tive-scale Consortium for Small Scale Modeling (COSMO-
DE-EPS; Gebhardt et al. 2011) system. COSMO-DE-EPS
used four distinct global driving models, which were combined
with perturbed physics parameters to represent IC, BC, and
model uncertainty}although there was no diversity with re-
spect to dynamical core or the parameterization schemes
themselves, as there is in HREF and in this study. This “multi-
analysis” ensemble design is somewhat analogous to HREF’s,
but otherwise uncommon in American NWP. Several studies
analyzing COSMO-DE-EPS forecasts (Keil et al. 2014;
Kühnlein et al. 2014; Marsigli et al. 2014), along with another
study evaluating CAM ensemble forecasts from two separate
driving models (Porson et al. 2019), found value in the spread
added when disparate driving models were employed. Further-
more, those studies which quantified CAM ensemble spread
arising from representing IC uncertainty versus other sources
of uncertainty tended to find a meaningful contribution from
ICs out to 6–18 h into the forecast (Kühnlein et al. 2014;
Porson et al. 2019). Building on these previous findings, a

key research question in the present study is: do the driving
models dominate CAM forecast differences at early lead
times? And, if so, at what lead time is the influence of the
driving models typically superseded by that of the model
configurations?

The primary goal of the present study is to investigate the
impacts of model configuration (e.g., dynamical core and
parameterizations) versus driving model (the global NWP
model providing ICs/BCs) on CAM solution spread and skill
at next-day lead times for springtime in the continental
United States, where severe local storms are more common-
place than in regions covered by the aforementioned Euro-
pean studies. In particular, we are interested in partitioning
the relative importance of model configuration versus driving
model in influencing CAM forecasts and how this partitioning
changes with lead time. These research questions have impli-
cations for CAM ensemble design (including ensembles of op-
portunity), particularly the importance of optimizing the
sampling of model uncertainty versus IC/BC uncertainty at
different time scales. Our experimental setup also invites a
secondary goal of identifying biases and other performance
characteristics of the specific model configurations and driv-
ing models we are testing through traditional verification
metrics. For both goals, our focus is on model fields relevant
to forecasts of deep moist convection}and severe local
storms, in particular. The paper is organized as follows:
Section 2 describes our datasets and verification techniques;
section 3 details our results; and section 4 provides broad
conclusions and recommendations for how future work
might build on our findings.

2. Methods

a. Datasets

Our CAM experiments cover all combinations generated by
three model configurations and two driving models, yielding
six total experiments; full details of each experiment are pre-
sented in Table 1. Hereafter we use “driving model” to mean
the global NWP model from which an experiment inherits ini-
tial and boundary conditions, including both the lateral and

TABLE 1. Configurations for the six NWP CAM experiments in this study. PBL schemes used include the Mellor–Yamada–
Nakanishi–Niino (MYNN; Nakanishi and Niino 2004), Mellor–Yamada–Janjić (MYJ; Janjić 1994), and Smagorinsky (Smagorinsky
1963; Lilly 1992) [blended, depending on the ratio of grid spacing to local PBL height, with a conventional 1D nonlocal scheme as
described in Boutle et al. (2014)] formulations. Microphysics schemes include the Thompson (Thompson et al. 2008) and um-sm
[based on modifications to the warm rain scheme of Wilson and Ballard (1999) and tuned for the midlatitudes]. LSMs include the
Noah (Chen and Dudhia 2001) and JULES (Best et al. 2011; Clark et al. 2011) schemes. Complete details of the um experiment
model configurations are consistent with the RAL2-M package used in Steptoe et al. (2021), which itself is a minor update to the
RAL1-M configuration described more exhaustively in Bush et al. (2020). UM-G refers to the Met Office’s operational global run of
the UM.

Expt Core PBL Microphysics LSM ICs LBCs Soil temperature Soil moisture dx (km)

fv3-GFS FV3 MYNN Thompson Noah GFS GFS GFS GFS 3.0
fv3-UM FV3 MYNN Thompson Noah UM-G UM-G UM-G UM-G 3.0
um-GFS UM Smag-blend um-sm JULES GFS GFS GFS UM-G 2.2
um-UM UM Smag-blend um-sm JULES UM-G UM-G UM-G UM-G 2.2
wrf-GFS WRF-ARW MYJ Thompson Noah GFS GFS GFS GFS 3.0
wrf-UM WRF-ARW MYJ Thompson Noah UM-G UM-G UM-G UM-G 3.0
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lower boundaries. Furthermore, we name each experiment us-
ing the convention (configuration)-(DRIVING MODEL);
e.g., fv3-GFS is the experiment with an FV3-based configura-
tion driven by ICs and BCs from the GFS. Although we do
not consider our set of experiments an ensemble, we nonethe-
less analyze the degree of similarity between experiments as a
proxy for spread in a hypothetical ensemble of opportunity
with similar membership.

Each model configuration employs a unique dynamical
core: the Advanced Research version of the Weather Re-
search and Forecasting (WRF-ARW) Model (Skamarock
et al. 2008, 2021); the UM; and the Finite Volume Cubed-
Sphere (FV3; Putman and Lin 2007). However, additional
important configuration differences exist, and the perfor-
mance attributes of a model configuration in the present
study should not be interpreted as necessarily intrinsic to its
underlying dynamical core. Crucially, the planetary bound-
ary layer (PBL) parameterization scheme differs between
all three configurations, while the microphysics scheme and
land surface model (LSM) differ between some configura-
tions. CAM forecasts of convection and precipitation are
known to be sensitive to such parameterization choices
(e.g., Schwartz et al. 2010; Johnson et al. 2011; Coniglio et al.
2013; Duda et al. 2017; Loken et al. 2019). Furthermore, the
um model configuration uses 2.2-km horizontal grid spacing,
while the fv3 and wrf configurations use 3 km. The details of
each model configuration were largely inherited from ongo-
ing work and existing systems at each contributing research
institution,1 which were used opportunistically for this
study. Our analyses herein are restricted to the set of dates
for which this international collaboration for SFE2020 was
planned, and also to the set of model forecast fields which
could be postprocessed and transmitted by all participating
institutions.

The two driving models used for each configuration are
NCEP’s Global Forecast System (GFS) and the Met Of-
fice’s global run of the UM (UM-Global). Each driving
model represents the flagship operational global determin-
istic NWP from its respective modeling center, and each
uses its own data assimilation (DA) system, so our experi-
ments are inheriting unperturbed analyses from indepen-
dent sources. In 2020, the operational GFS used the FV3
dynamical core. As such, fv3-GFS and um-UM are the two
experiments in which the CAM configuration is driven by a
coarse global run with the native core. All experiments are
“cold start” CAMs, meaning they make no attempt to rep-
resent convective storms or other fine-scale features not re-
solvable on the coarse driving model grid in their ICs, so a
spinup time on the order of 6–12 h can be expected (e.g.,
Kain et al. 2010; Raynaud and Bouttier 2016; Wong and
Skamarock 2016). There is also the potential for so-called
model shock when ICs lie distant from the dynamical

model’s attractor2 (Judd et al. 2008; Klocke and Rodwell
2014), a situation made more likely when a nonnative driv-
ing model is employed; the result may be a period of drift
toward the model attractor during the beginning of the
forecast. To the extent that the atmospheric ICs in some of
our experiments produce such a shock, it is tolerated as a
cost that is widely accepted for limited area models in oper-
ational NWP (e.g., HREF).

Two minor caveats in the experimental setup should be
noted. First, owing to real-time data flow considerations, the
um-GFS was initialized using atmospheric data with coarser
vertical resolution than the um-UM. Second, regarding the
soil state in the LSM for each experiment: Flack et al. (2021)
describe some limitations posed on the present study when at-
tempting to inherit soil states from nonnative driving models.
In short, it was necessary to use UM-Global soil moisture con-
ditions in the um-GFS experiment due to differences in the
formulation of soil moisture parameters by the JULES and
Noah LSMs used in the UM-Global and GFS, respectively.
This caveat means that our experimental setup cannot be in-
terpreted as systematically varying driving models in the
strictest possible sense, although only one of the six experi-
ments is affected in this way. Schwartz et al. (2022) found a
small impact from the initial soil state (relative to atmospheric
ICs) on next-day CAM forecasts (cf. their Fig. A2), increasing
our confidence that this caveat should not impose major quali-
tative limitations on our conclusions herein. This caveat also
does not apply to the soil temperatures, which are inherited
from the appropriate driving model in all cases. The potential
for some degree of model shock also exists in the LSM for
nonnative driving models, and unlike atmospheric ICs, the
drift resulting from such shock may occur gradually and ex-
tend throughout our forecast cycle.

All experiments were initialized daily at 0000 UTC for
32 cases in spring 2020 and integrated to a lead time of 36 h.
The dates of the cases are as follows: 25 April–1 May,
3–16 May, and 18–28 May. The compute domains for each
model configuration are shown in Fig. 1. For the real-time
data flow, all experiments were re-gridded to a common 3-km
grid for the CLUE, and those re-gridded data are used for
analyses herein. For the 2.2-km um experiments, an area-
weighted re-gridding approach was used to map data onto
the 3-km CLUE grid. Because of the relatively small sample
size of unique case days in SFE2020 (N 5 32), we have
elected not to perform verification of forecasts over regional
subdomains in this study; there may be only a handful of
cases with convection in some regions, and Schwartz and
Sobash (2019) found some noisy regional statistics for large
precipitation thresholds even using a much larger sample of
cases (N 5 497).

1 The fv3, um, and wrf configurations were managed and exe-
cuted in real time by NSSL, the Met Office, and NCAR, respec-
tively. At each institution, the CAM runs for SFE2020 represented
an annual iteration upon years of ongoing work; most configura-
tion choices were already established in previous years.

2 Judd et al. (2008) present evidence that “operational weather
models evolve onto attracting manifolds of lower dimension than
the entire state space,” and that common DA techniques may pro-
duce ICs that are distant from such manifolds. These manifolds,
the details of which are not generally known a priori for a given
NWPmodel, are what we mean by “model attractors.”

ROBER T S E T A L . 101JANUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 12/03/23 09:16 AM UTC



b. Verification fields and methods

1) PRECIPITATION

We verify quantitative precipitation forecasts (QPFs) over
3- and 24-h periods to evaluate model skill in predicting the
location and intensity of precipitation. NCEP’s radar-derived,
gauge-corrected Stage-IV quantitative precipitation estimate
(QPE) dataset with 4.8-km grid spacing (Nelson et al. 2016)
is used as truth. QPFs and QPEs are remapped to a common
4-km grid using a neighbor budget interpolation (Accadia
et al. 2003). All QPF verification metrics are computed over
the area depicted by red shading in Fig. 1, which covers most
of the eastern two-thirds of the contiguous United States.

Multiplicative biases and fractions skill scores (FSSs; Roberts
and Lean 2008) are computed for 3- and 24-h QPFs. The 3-h time
windows cover forecast hours {0–3, 3–6, … , 33–36}, and the 24-h
time window covers forecast hours 12–36. Multiplicative bias is
the ratio of the number of forecast to the number of observed
grid boxes exceeding a threshold; an unbiased forecast has a
multiplicative bias of 1, while forecasts of too much or too little
coverage of precipitation have biases greater or less than 1, re-
spectively. FSS is based on the difference in the fraction of fore-
cast and observed points that exceed a threshold within a
specified radius of influence (ROI). Herein, FSS is directly com-
puted using Eq. (3) in Loken et al. (2019):

FSS 5 1 2

1
M

∑
M

m51
(Fm 2 Om)2

1
M

∑
M

m51
F2
m 1 ∑

M

m51
O2

m

( ) , (1)

where M is the number of forecast–observation pairs, Fm is
the ensemble mean forecast fraction of grid points exceeding
the threshold within the ROI surrounding point m, and Om is

the equivalent fraction for the observations. Multiplicative
bias and FSS are computed at QPF thresholds of 0.10, 0.25,
0.50, 0.75, and 1.00 in. Since Mittermaier and Roberts (2010)
found FSSs can be sensitive to bias, a set of bias-corrected
FSSs are computed by matching QPF quantiles in the fore-
casts and observations. For each threshold, the corresponding
QPE quantile is computed, and the precipitation threshold in
the QPFs matching that observed quantile is used in the FSS
calculation. This process effectively removes bias, allowing a
cleaner assessment of spatial placement. For bias-corrected
FSSs, although the threshold used for QPFs is specified via
quantile mapping, we still label the threshold by the original
observational QPE value for clarity. For each of these thresh-
olds, FSSs are computed for 12-, 24-, and 40-km ROIs.

2) COMPOSITE REFLECTIVITY

To assess skill in the forecast placement and coverage of
convective storms, composite reflectivity (CREF) is verified
by computing FSSs. The CREF verification domain is the
intersection of the um grid (Fig. 1, blue outline) with the land-
mass of the contiguous United States. The verification ap-
proach is similar to that described for individual ensemble
members in R20. To summarize, the instantaneous CREF
field at lead times of {1, 2, … , 36} h is compared to the corre-
sponding MRMS (Smith et al. 2016) merged reflectivity QC
composite (hereafter merged reflectivity) available closest to
the top of the hour (always within 63 min). Specifically, using
a 40-km ROI and 40-km Gaussian smoothing parameter (s),
neighborhood probabilities are computed for each forecast
experiment-hour and compared to the equivalent smoothed
probability field from merged reflectivity. A single threshold
of 40 dBZ is verified, sufficient to capture the presence of
most deep moist convection. A quantile mapping approach is
applied by finding the percentile for each forecast experiment

FIG. 1. Model domain for the fv3, wrf, and um configuration experiments are indicated by the
green, black, and blue outlines, respectively. The red shaded region indicates the region over
which precipitation and surrogate severe verification were conducted. The composite reflectivity,
temperature, and dewpoint verification were conducted over the intersection of the um domain
(blue outline) with the landmass of the contiguous United States.
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corresponding to 40 dBZ in the MRMS data, and that thresh-
old is used to compute neighborhood probabilities from fore-
cast reflectivity. As with precipitation, we simply refer to this
threshold as 40 dBZ for clarity. We then use the bias-
corrected CREF forecasts to compute FSSs with (1). To de-
termine statistical significance, we compute 95% confidence
intervals for the pairwise differences in FSSs between experi-
ments at each lead time for all pairs that share either a com-
mon configuration or driving model. The confidence intervals
are computed using the bootstrap technique of Wilks (2011)
with 10 000 resamples of the 32 SFE2020 cases. The FSS dif-
ference between a pair of experiments is considered statisti-
cally significant if the 2.5th and 97.5th percentile of resampled
differences both have the same sign.

Additionally, the degree of similarity between pairs of ex-
periments is evaluated by computing the coefficient of deter-
mination (r2) between the CREF neighborhood probability
fields at each hour. There are 15 possible combinations of our
six experiments, and r2 is computed for each of these 15 pairs.
Larger r2 indicates that the two experiments being compared
have more similar forecasts of storm placement and coverage.
For five time bins (6–10, 12–16, 18–22, 24–28, and 30–34 h),
using the same bootstrap approach described for CREF FSSs,
95% confidence intervals are computed for the difference be-
tween the mean r2 of all pairs sharing a configuration and the
mean r2 of all pairs sharing a driving model.

3) SURROGATE SEVERE

In addition to placement and coverage of convection gener-
ally, another important role of CAM forecasts is the detection
of potential severe weather [tornadoes, wind gusts $ 50 kt
(25.7 m s21), or hail diameter $ 1.0 in.] specifically. To verify
this aspect of our experiments, the surrogate severe approach
(Sobash et al. 2011, 2016) is employed using 2–5 km above
ground level (AGL) updraft helicity (UH; Kain et al. 2008) as

a proxy for forecast severe weather. The approach for gener-
ating the surrogate severe forecasts is again virtually identical
to that used in R20. As in R20, UH percentiles are used be-
cause the experiments have widely variable UH climatologies
(Fig. 2). Surrogate severe forecasts are verified against prelim-
inary local storm reports (LSRs) from the SPC (obtained
from spc.noaa.gov/climo/reports) mapped to the same 81-km
grid on which surrogate severe forecasts are generated; any
grid box with one or more LSRs is assigned 1, while all others
are assigned 0. One difference is that in the present study, sur-
rogate severe forecasts are produced both for the 24-h time
window covering 1200–1200 UTC (forecast lead times of 12–
36 h) as in R20, and also for rolling 4-h time windows covering
lead times of {4–8, 5–9, … , 32–36} h. The rolling windows af-
ford a perspective on how skill evolves with lead time, and we
use a window size of 4 h because Krocak and Brooks (2020)
found that .95% of severe LSRs within 40 km of a point on
any given severe weather day occur within a 4-h period. Sur-
rogate severe forecasts are verified over the same domain as
QPF (Fig. 1, red shaded area).

For surrogate severe forecasts, the relative operating char-
acteristic curve (ROC; Mason 1982) is constructed by plotting
the probability of detection (POD) versus the probability of
false detection (POFD) using increasing probability thresh-
olds. Herein, the thresholds used are 2%, 5%, 10%, 15%, … ,
90%, and 95%. The area under the ROC curve (AUC) is
computed, which measures the ability of the forecast to dis-
criminate between events and nonevents. The possible range
of AUC is 0–1, where values of 0.5 or below indicate no skill
and 1 is a perfect forecast. The trapezoidal approximation (e.g.,
Wandishin et al. 2001) is used to calculate the AUC, which sim-
ply involves connecting each consecutive POD–POFD point
with a straight line. This creates a series of trapezoids when
considering the area directly beneath each pair of adjacent

FIG. 3. Precipitation biases for 24-h accumulations (covering
forecast lead times of 12–36 h) at thresholds of 0.10, 0.25, 0.50, 0.75,
and 1.00 in. for each model, averaged over all 32 forecasts.

FIG. 2. UH values as a function of percentile for 24-h maximum
UH (covering forecast lead times of 12–36 h) on the 81-km grid
over all 32 cases for each set of model simulations.
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POD–POFD points. The areas of all the trapezoids are
summed, which gives a robust estimate of the AUC.

A version of FSS is calculated using the mean-square error
of the severe weather probabilities relative to “practically
perfect” observations (e.g., Hitchens et al. 2013), with the lat-
ter calculated by applying a Gaussian filter with s 5 120 km
to the 81-km grid of LSRs [see Eqs. (3)–(5) in Sobash et al.
(2011)]. Additionally, the Brier skill score (BSS) is computed
as

BSS 5 1 2
BS

BSreference
, (2)

where

BS 5
1
N
∑
N

i51
(Pi 2 Oi)2, (3)

and N is the number of forecast–observation pairs, P is the se-
vere weather probability at the ith point, and O is the obser-
vation at the ith point (1 if an event occurred and 0 if it did

not occur). BSreference uses the same formula as BS, except P
is the sample climatology of the event over all cases. Finally,
the reliability component of the Brier score (BSrely; Murphy
1973) is computed following Eq. (2) in Atger (2003): the
squared differences of the probabilities (within specified bins)
and their corresponding observed frequencies, weighted by
the bin’s frequency of forecast occurrence, are summed. BSrely
measures how closely the points within a reliability diagram
follow the perfect reliability line, and smaller values (closer to 0)
are better.

4) THERMODYNAMIC FIELDS

We verify 2 m AGL temperature and dewpoint to assess
model forecasts of near-ground thermodynamics, which are
often crucial controls on the convective environment and con-
vection initiation. These thermodynamic fields are verified
over the same domain as CREF (the intersection of the um
compute domain with the contiguous United States).

We use two separate truth datasets to verify the 2 m AGL
thermodynamic fields. The first is the NCEP Real Time

FIG. 4. Precipitation biases as a func-
tion of lead time for 3-h accumulations
at thresholds of (a) 0.10, (b) 0.25,
(c) 0.50, (d) 0.75, and (e) 1.00 in., aver-
aged over all 32 forecasts. A legend is
provided in (a).
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Mesoscale Analysis (RTMA; e.g., Morris et al. 2020), which
provides an hourly gridded analysis. For 2 m AGL tempera-
ture and dewpoint, the RTMA uses a blend of the most recent
available High Resolution Rapid Refresh (HRRR; Benjamin
et al. 2016) and North American Mesoscale (NAM; e.g., Aligo
et al. 2018) CONUS nest model runs as its first-guess field.
The weights assigned by RTMA to each of these model fore-
casts are inversely related to the forecast’s age, with HRRR
forecasts initialized hourly and NAM CONUS nest forecasts
initialized every 6 h; thus, the HRRR always receives a larger
weight, and is effectively dominant at some hours. The
HRRR itself may be subject to systematic biases; e.g., Lee
et al. (2019) found consistently warm 2-m temperature biases
relative to micrometeorological tower measurements in Ala-
bama during an 8-month study period. These HRRR biases
may pass through to the RTMA to some degree, especially in
areas with poor observational coverage or quality. To address
this issue, we also verify 2 m AGL temperature and dewpoint
against all aviation routine weather report (METARs) avail-
able within the verification domain within 630 min of the
forecast valid time. Although the aggregate METAR verifica-
tion statistics may be somewhat spatially biased by clustering
of sites, they provide a separate perspective unaffected by any
systematic RTMA biases.

For each experiment, using both the RTMA and METARs
as truth, additive bias and root-mean-square error (RMSE)
are computed hourly at forecast lead times of 1–36 h. Addi-
tive bias is simply the domain-wide mean deviation of the
forecast field from the observation field; an unbiased forecast
(relative to the RTMA truth) has a bias of 0.

Analogously to r2 for CREF, we also compute root-mean-square
difference (RMSD) between pairs of experiment forecasts for
2-m temperature and dewpoint. The orientation of this metric
is opposite r2, as larger RMSD indicates less similarity between
the two forecasts being considered. For five time bins (6–10,
12–16, 18–22, 24–28, and 30–34 h), using the same bootstrap
approach described for CREF FSSs, 95% confidence intervals
are computed for the difference between the mean RMSD of
all pairs sharing a configuration and the mean RMSD of all
pairs sharing a driving model.

Although parcel-based diagnostics like convective available
potential energy were not available for all forecast datasets
owing to data flow and postprocessing constraints, we verify
700–500-mb (1 mb 5 1 hPa) lapse rate and 850-mb tempera-
ture forecasts in order to assess thermodynamic forecasts
aloft. For these fields, we evaluate model forecasts at 24-h lead
time, and use rawinsonde observations taken at 0000 UTC
daily from 54 sites dispersed across the intersection of all three
model configuration domains and the contiguous United States
(Fig. 1) as truth. We compute additive bias and RMSE for
these fields.

3. Results

a. Precipitation

Multiplicative biases for 24-h QPF (Fig. 3) reveal generally
larger high biases for larger precipitation thresholds across

experiments, except for the wrf-GFS. Experiments driven by
the UM-Global (solid curves) exhibit modestly higher biases
than those driven by the GFS (dashed curves) for all three
configurations. Additionally, um experiments (black curves)
have the smallest biases overall, except at high thresholds.
Figure 4 shows multiplicative QPF biases for 3-h windows
within the forecast cycle. Both um experiments, but particu-
larly the um-UM, display a peak in bias around 18-h lead time
for low and moderate thresholds. This is followed by a rapid
decrease at later lead times, when the um experiments have
notably smaller biases than the other experiments. It can thus
be inferred that the smaller 24-h QPF biases for the um con-
figuration (Fig. 3) are mainly a result of less forecast precipita-
tion during lead times of 21–30 h, corresponding to the late
afternoon and early evening over the United States. This
characteristic of the um QPFs is related to diurnal precipita-
tion cycle errors they suffer from, which will be explored in
more detail later in this subsection.

Figure 5 shows FSSs for bias-corrected 24-h QPF as a func-
tion of threshold. The um-UM has the best skill across all
thresholds, and its advantage is considerable at thresholds
$ 0.5 in. UM-Global-driven experiments (solid curves) out-
perform GFS-driven experiments (dashed curves) for um and
wrf, but the opposite is true for fv3. In the case of the fv3 and
um configurations, experiments using the native driving
model (fv3-GFS and um-UM) achieve notably higher FSSs
than those using the nonnative driving model (fv3-UM and
um-GFS). Non-bias-corrected FSSs and FSSs for other ROIs
were computed and, aside from differences in overall FSS
magnitude, gave very similar results for the 24-h period (not
shown).

FIG. 5. Precipitation FSSs (ROI 5 24 km; bias corrected) for
24-h accumulations (covering forecast lead times of 12–36 h), as a
function of precipitation threshold in the observations, for each set
of simulations averaged over all 32 forecasts. The threshold used
for QPF is actually the percentile from that experiment’s QPF dis-
tribution corresponding to the percentile of the labeled threshold
in the QPE distribution.
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FSSs for bias-corrected 3-h QPF (Fig. 6), however, reveal
that skill differences are conditional on lead time. The um-UM,
which performs best at all thresholds for aggregate 24-h QPF, is
only among the most skillful experiments after 24–30-h lead
time at most thresholds. At higher thresholds, the um-UM also
exhibits a pronounced minimum in FSS for the 15–21-h period,
corresponding temporally to its sharp peak in bias (Fig. 4). The
wrf-UM is consistently among the most skillful experiments
throughout the forecast, particularly early (note that spinup
is likely incomplete during the first 6–12 h, but the wrf-UM
still tends to outperform the um-UM until 18-h lead time).
UM-Global-driven experiments (solid curves) generally outper-
form their GFS-driven equivalents (dashed curves) for the first
12–15 h at lower thresholds, especially in the case of um and wrf
configurations, for which the magnitude of the UM-Global-driven
FSS advantage is typically near 0.05 during this period. This sug-
gests the UM ICs may provide an advantage over GFS ICs with
respect to precipitation features. Overall, however, there is not a
particular configuration or driving model that consistently per-
forms best across QPF thresholds and lead times for 3-h QPF,
even after applying bias correction. This suggests that, when fore-
casting across lead times and weather regimes, the diversity of our
experiments’ configurations and driving models could be useful in
a CAM ensemble of opportunity.

To investigate the substantial discrepancies in experiment
rank order for bias and FSS with lead time, we examine time–

longitude plots of hourly QPF for each experiment (Figs. 7b–g),
averaged across all cases; for reference, the observational Stage-
IV data are also provided (Fig. 7a). It is apparent that both um
experiments exhibit a diurnal QPF maximum in the eastern
United States around 18–24 h (Figs. 7f,g), earlier in the forecast
period than seen in the other experiments or observations; this
shift is especially pronounced in the um-UM. Accordingly, the
spatial correlation coefficients with Stage-IV are nearly 10%
smaller for the um experiments than the fv3 and wrf. Domain-
averaged 1-h QPF (Fig. 7h) confirms that um experiments
(black curves) display a marked offset of the diurnal precipita-
tion peak: it occurs at 19- or 20-h lead time, whereas the other
configurations match Stage-IV’s peak at 23-h lead time. Overall,
these results suggest a rather pronounced systematic early bias
in the diurnal convective cycle for the um configuration used in
the present study; yet, when QPF is summed over the entire di-
urnal cycle, the um-UM still performs remarkably well with a
heightened skill advantage in the second overnight period, par-
ticularly at the 0.1- and 0.25-in. thresholds (Fig. 4).

Subjective examination of QPF and composite reflectivity
forecasts for all 32 cases (not shown) reveals a persistent ten-
dency for early initiation (often between 1700 and 1900 UTC)
of cellular convection in both um experiments, particularly
the um-UM; this behavior was most pronounced from 23 to
28 May, when a weak upper-level low pressure system lin-
gered over the south-central United States. Figure 8 displays

FIG. 6. Precipitation FSSs (bias corrected) for 3-h accumulations as a function of lead time for the observed thresholds 0.10, 0.25, 0.50,
and 1.00 in., using ROIs of (a) 12, (b) 24, and (c) 40 km. FSSs are averaged over all 32 forecasts. In (a), the thresholds corresponding to
each set of FSSs are given in the legend. The threshold used for QPF is actually the percentile from that experiment’s QPF distribution
corresponding to the percentile of the labeled threshold in the QPE distribution.
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composite reflectivity for all experiments initialized at 0000 UTC
24 May 2020 valid at 18-h lead time, along with the corre-
sponding MRMS merged reflectivity valid at 1800 UTC
24 May. In this illustrative case, widespread cellular convec-
tion developed by early afternoon over a large region around
the periphery of the upper-level low in both um experiments
(Figs. 8e,f). Although the fv3 and wrf configurations depict too
little convection in eastern Texas (Figs. 8a–d), observed reflectiv-
ity (Fig. 8g) nonetheless reveals that both um experiments}and
particularly the um-UM}are far too aggressive with the cov-
erage of discrete, cellular storms elsewhere. Although they
ran over a U.K. domain, Clark et al. (2016) found a resolu-
tion dependence in the UM wherein their 4-km configuration

had storms “too few, too intense, and too organized” (the op-
posite problem we see in Figs. 8e,f) relative to their 1.5-km
configuration (cf. their Figs. 1, 3, and 4). Keat et al. (2019)
found typically a 2-h early bias in convection initiation for a
set of cases run over South Africa with a 1.5-km UM configu-
ration, and the early bias was even worse for a corresponding
300-m configuration. Thus, there is some precedent in the
literature for premature convection initiation by UM CAM
runs, particularly as grid spacing decreases from 4 km. The
factor(s) responsible for the early, aggressive initiation of
convection in the um configuration used herein constitute an
important future research question, and may also be explored
further during future testbed experiments.

FIG. 7. Time–longitude diagrams of diurnally averaged precipitation for (a) Stage-IV, (b) wrf-GFS, (c) wrf-UM, (d) fv3-GFS,
(e) fv3-UM, (f) um-GFS, and (g) um-UM over all 32 forecasts. In (a)–(e), the map at the top indicates the domain over which the time–
longitude diagrams are constructed. In, (b)–(g), the spatial correlation between the forecast and Stage-IV observations at forecast hours 3–36 is
denoted at the middle left. (h) Hourly domain averaged precipitation for Stage-IV and each set of forecasts.
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FIG. 8. Composite reflectivity forecast at 18-h
lead time for the initialization at 0000 UTC
24 May 2020 for the (a) wrf-GFS, (b) wrf-UM,
(c) fv3-GFS, (d) fv3-UM, (e) um-GFS, and
(f) um-UM; and (g) MRMS merged reflec-
tivity at 1800 UTC 24 May 2020.
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b. Composite reflectivity

Figure 9 shows CREF $ 40 dBZ FSSs as a function of lead
time for each experiment. From 12-h lead time onward, with
few exceptions, wrf experiments (red curves) perform best,
followed by um (black curves), then fv3 (blue curves). The ad-
vantage for wrf experiments over their fv3 and um equivalents
is statistically significant at most lead times, particularly for
the UM-driven experiments. There is also some indication of
higher FSSs for experiments driven by their native model.
The um-UM outperforms the fv3-UM by a statistically signifi-
cant margin at numerous time steps late in the forecast cycle,
whereas the fv3-GFS generally outperforms the um-GFS
(albeit only with statistical significance for a short period in
the afternoon). Also, the native fv3-GFS and um-UM outper-
form the nonnative fv3-UM and um-GFS, respectively, with
statistical significance at some lead times. Overall, the CREF
FSSs suggest a skill advantage for the wrf configuration, and
also for native-driven experiments broadly, in predicting the

location and coverage of storms. The native-driven model
advantage corroborates our findings for QPF skill from
section 3a; however, the pronounced wrf advantage for CREF
is not seen for QPF. This suggests a difference exists in the
model configurations’ relative performance when focusing
specifically on deep moist convection (e.g., CREF $ 40 dBZ)
versus precipitation broadly.

Figure 10 shows the mean coefficient of determination (r2)
computed between the neighborhood probability fields for
pairs of experiments. For lead times of 6–10 and 12–16 h, ex-
periments sharing a driving model are more similar than those
sharing a configuration, though only with a statistically signifi-
cant difference in the first period. By lead times of 18–22 h,
however, this pattern has reversed, and configuration pairs re-
main more similar than driving model pairs by a statistically
significant margin through 30–34 h, the final period analyzed.
The relative excess of r2 for configuration pairs over driving
model pairs is largest at 18–22 h, the period during which um

FIG. 9. FSSs for CREF neighborhood probabilities ($40 dBZ, ROI 5 40 km) for each experi-
ment as a function of lead time, averaged over all 32 cases. Instantaneous reflectivity forecasts
are verified hourly at the top of the hour. The threshold used for forecast reflectivity is actually
the percentile from that experiment’s reflectivity distribution corresponding to the percentile of
40 dBZ in the MRMS reflectivity distribution. Above the time series, statistical significance is in-
dicated for differences between some pairs of experiments. For pairs sharing a driving model
(top six rows), a dot indicates the configuration whose color matches the time series legend has a
better FSS at the 95% confidence level, while the absence of a dot indicates the difference is not
statistically significant. For pairs sharing a configuration (bottom three rows), a magenta dot indi-
cates that the UM-driven run has a better FSS at the 95% confidence level, a green dot indicates
that the GFS-driven run is better at the 95% confidence level, and the absence of a dot indicates
that the difference is not statistically significant.
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Fig. 10. Mean coefficient of determination (r2), over all 32 cases, between CREF . 40-dBZ neighborhood probabilities for pairs of ex-
periments. Data are binned by forecast lead time, and each row represents a 4-h bin. Each bin covers probabilities for the instantaneous
CREF field at the top of each hour in the bin, inclusive. The first, second, and third column of panels show r2 for experiment pairs sharing
a configuration [“CONFIG MATCH” (CM)], driving model [“DRIVING MATCH” (DM)], and neither attribute [“NO MATCH”

(NM)], respectively. For the leftmost column (CM), the left labels indicate the configuration shared by the experiment pair. For the second
column from left (DM), the top labels indicate the shared driving model, and the left labels indicate the combination of configurations.
For the third column from left, the top labels indicate the combination of driving models, and the left labels give the corresponding config-
urations (e.g., column “GFS/UM” and row “fv3/um” gives r2 for the fv3-GFS and um-UM). The rightmost column displays bar charts
with r2 averaged over all experiment pairs within each of these three categories. An asterisk after “CM” or “DM” indicates that r2 for
that group is statistically significantly larger than r2 for the other two groups at the 95% confidence level.
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experiments also display a diurnal shift toward earlier QPF
maxima (cf. Fig. 7h). Indeed, the pair of um experiments at-
tains the largest r2 among all experiment pairs for every time
bin after 18-h lead time, suggesting this configuration may
have relatively unique attractors for state variables directly
controlling convective evolution. Also notable is the particu-
larly small r2 for pairings of the fv3 and um experiments. Ex-
periment pairs driven by the GFS consistently show modestly
larger r2 than those driven by the UM-Global. Across all time
bins, experiment pairs which share neither a configuration nor
driving model exhibit the lowest r2 on average, as expected.
Broadly speaking, the clustering trends for CREF suggest a
transition from stronger driving model influence to stronger
model configuration influence somewhere around 16–18-h
lead time (although the diurnal cycle could also be important,
in which case this transition may preferentially fall near the
time of local noon), providing one perspective on the answer
to our key research question.

c. Surrogate severe

Figure 11 presents AUC, FSS, and BSrely for the 24-h surro-
gate severe forecasts (treating the entire period as a single
field). Differences between all experiments in AUC are rela-
tively small. For FSS, GFS-driven experiments using wrf and
fv3 perform relatively well, but the equivalent um experiment
is the worst of the six. Although the absolute magnitudes of
BSrely differences among experiments are small, the wrf ex-
periments perform best, with notably reliable forecasts of
midrange probabilities. Overall, the only clear trend across
these metrics is for um experiments to perform somewhat
worse than wrf and fv3 for the 24-h surrogate severe forecasts;
performance of the driving models is quite inconsistent across
configurations.

Figure 12a shows maximum FSSs for 4-h rolling windows of
surrogate severe forecasts. As with QPF, this finer temporal
verification reveals marked changes in the relative perfor-
mance of experiments across different periods of the forecast.
Between lead times of 12–24 h, representing the morning and
afternoon of the first diurnal cycle, the wrf-UM exhibits a sub-
stantial lead in skill among all experiments, and both um ex-
periments (black curves) perform far worse than the other
configurations. Between 21- and 25-h lead time, the um experi-
ments make a rapid recovery after which they perform rela-
tively well, alongside the fv3-GFS and wrf-GFS. Figures 12b–g
show FSSs over the full computed s-percentile space for each
experiment for the 4-h period ending at 30-h lead time. By this
second evening time frame, the UM-Global-driven (solid
curves) experiments perform worse than the GFS-driven ex-
periments (dashed curves), except for the native-driven um-
UM. Figure 13 presents an equivalent plot for AUC, generally
reflecting results similar to those found for FSS; however, rela-
tive differences between experiments are smaller, and the um-
GFS shows skill similar to the fv3 and wrf configurations
throughout the forecast. Overall, the 4-h surrogate severe fore-
casts reflect the same pronounced um deficiency seen for QPF
in capturing the diurnal convective cycle from about 12–24-h
lead time, and also suggest some advantage for GFS-driven

fv3 and wrf experiments over their UM-Global-driven coun-
terparts in capturing severe weather events.

To corroborate the um configuration’s diurnal cycle defi-
ciencies in the context of severe storms specifically, we plot a
time–longitude diagram of normalized hourly average LSR
density (Fig. 14a) to compare against equivalent plots of aver-
age UH for each experiment (Figs. 14b–g). Although the
vastly disparate UH climatologies across configurations are
apparent, the overall character of the UH distribution
matches LSRs reasonably well for the fv3 and wrf experi-
ments, as evidenced by r . 0.775 (Figs. 14b–e). However, the
um experiments again display a notable early bias in UH.
When considering domain-average LSR density and average
UH (Fig. 14h), both the fv3 and wrf configurations peak about
1 h too early, whereas um peaks 3 h too early; this discrepancy,
while substantial, is not quite as extreme as the discrepancy
found for QPF. This is likely because much of the LSR and
UH density is contributed from convective storms over the
Great Plains region west of longitude 968W (Figs. 14a,f,g),
where the um experiments exhibit a less pronounced tendency
for premature QPF than areas farther east (Figs. 7a,f,g).

d. Thermodynamic fields

Figures 15a and 15b present 2 m AGL temperature additive
bias as a function of lead time. Except for a couple brief peri-
ods in the um-UM, all six experiments exhibit a cool bias
throughout the forecast period. During the first 8 h, the cool
bias is larger for GFS-driven experiments (dashed curves)
than UM-Global-driven (solid curves). This trend reverses for
the wrf (red curves) and fv3 (blue curves) configurations by
10-h lead time, with their GFS-driven experiments becoming
warmer for the remainder of the forecast cycle; such a rever-
sal is not present in the um configuration (black curves). At
lead times of 18 h onward, there is distinct separation of mean
bias by configuration: fv3 is coolest, followed by wrf, and um
has the least pronounced cool biases. RMSE for 2 m AGL
temperature (Figs. 15c,d) also exhibits clustering by configura-
tion, with fv3 incurring the largest errors and um the smallest
for most of the period. UM-Global-driven experiments uni-
formly outperform GFS-driven experiments for the first 10 h,
suggesting a possible advantage for UM-Global atmospheric
temperature ICs over the GFS. The fact that the fv3-UM has
smaller RMSE than the fv3-GFS early in the forecast cycle
(Figs. 15c,g), despite the potential for model shock in the fv3-
UM related to the nonnative soil model, is further evidence of
superior UM ICs. RMSE is maximized for all experiments at
20–26-h lead times, and during this period of the forecast, fv3
experiments show RMSEs up to 1–1.5 K larger than their
equivalent wrf and um experiments. The rank order of experi-
ments by RMSE closely resembles the rank order of bias mag-
nitude throughout the forecast, suggesting systematic biases
are a large driver of total error. For the fv3 and um configura-
tions, the native-core driving model (GFS and UM-Global, re-
spectively) affords smaller RMSE. For both bias and RMSE,
results are qualitatively similar using either the RTMA or
METARs as truth.
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FIG. 11. AUC for 24-h surrogate severe forecasts as a function of s and UH percentile for (a) wrf-GFS, (b) wrf-UM, (c) fv3-GFS,
(d) fv3-UM, (e) um-GFS, and (f) um-UM averaged over all 32 SFE2020 cases. (g)–(l) As in (a)–(f), respectively, but for FSS. (m)–(r) As
in (a)–(f), respectively, but for BSrely. In each panel, a blue “x”marks the best score, which is indicated by nearby text. The vertical dashed
line marks the UH percentile at which the number of surrogate severe LSRs approximately matches the number of observed reports (i.e.,
bias5 1.0). In (m)–(r), the reliability diagrams are shown corresponding to the s and UH percentile at which BSrely is minimized.
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Additive biases for 2 m AGL dewpoint (Figs. 15e,f) reveal
a more persistent influence of the driving models wherein
UM-Global-driven experiments are drier than GFS-driven ex-
periments, although the difference is of negligible magnitude
in the case of the um experiments. Unlike for temperature,
there are qualitative differences between the RTMA and
METAR verification statistics: using METARs as truth re-
sults in systematically larger moist biases by around 1 K across
experiments, compared to using the RTMA. Model configura-
tion differences dominate the diurnal cycle of bias: um experi-
ments tend toward a moist bias overnight and near-zero bias
(against METARs) during peak diurnal heating; wrf experi-
ments display the opposite diurnal cycle; and fv3 experiments
are closest to unbiased for most of the forecast cycle outside
the afternoon and early evening hours (20–28-h lead time),
where they exhibit a pronounced moist bias. RMSE for 2 m
AGL dewpoint (Figs. 15g,h) reveals similar diurnal trends in
error magnitude for all experiments as for temperature, albeit
with more uniform performance across the six experiments:

RMSE never differs by more than 1 K between any pair of ex-
periments at a given lead time, except briefly from 22 to 25 h.
um experiments exhibit the largest errors for lead times ear-
lier than 6 h, while RMSE is consistently largest for fv3-UM
after 14-h lead time. Although fv3 experiments perform worst
during the second half of the forecast cycle, their RMSE ex-
cess for dewpoint is not as large as for temperature. Further-
more, the rank order of experiments by dewpoint RMSE late
in the forecast does not follow the rank order by bias, and
small bias does not imply small RMSE.

At 24-h lead time, additive biases for 700–500-mb lapse rate
(Fig. 16a) suggest that fv3 and um configurations are nearly
unbiased, while wrf configurations exhibit a modest high bias
of 0.14–0.30 K km21. For 850-mb temperature (Fig. 16b), cool
biases are present across experiments, but um experiments
are the least biased overall. The rankings of 850-mb tempera-
ture biases by configuration match those seen at 24-h lead
time for 2-m temperature (cf. Fig. 15a), with the fv3 coolest
and um warmest at both vertical levels. RMSEs for 700–500-mb

FIG. 12. For surrogate severe forecasts, (a) maximum FSS for rolling 4-h time win-
dows ending at the plotted time for each experiment averaged over all 32 forecasts.
The vertical line at forecast hour 30 indicates the end time for the 4-h period over
which (b)–(g) are valid. (b)–(g) FSS as a function of s and UH percentile for the wrf-
GFS, wrf-UM, fv3-GFS, fv3-UM, um-GFS, and um-UM, respectively.
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lapse rate and 850-mb temperature (Figs. 16c,d) are qualitatively
similar among all six experiments. Although it is possible
that the um configuration’s smaller afternoon cool bias at 2 m
AGL compared to fv3 and wrf reflects a tendency to reach the
convective temperature more easily, its corresponding tendency
to be warmer at 850 mb would also suggest typically stronger
boundary layer capping. As such, our analysis does not provide
a straightforward thermodynamic explanation for the um’s
tendency for premature convection initiation discussed in
section 3a.

Figure 17 displays 2 m AGL temperature RMSD between
pairs of experiments. Among shared configurations, um and wrf
experiments have smaller differences than fv3 experiments.
Among shared driving models, GFS-driven runs are modestly
more similar to one another than are UM-Global-driven runs,
in the aggregate. Figure 18 shows equivalent RMSD for 2 m
AGL dewpoint. The same trends seen for temperature RMSD
hold for both the model configurations and driving models, and

the separation between groups is larger overall for dewpoint.
These thermodynamic fields follow some trends seen with
CREF r2 regarding the clustering of experiments sharing a con-
figuration or driving model. One potentially important differ-
ence is that clustering by driving model is less dominant at
6–10- and 12–16-h lead times for 2 m AGL thermodynamics
than for CREF; in fact, clustering is statistically significantly
stronger by configuration even at these early lead times for tem-
perature. This points to an even more immediate influence of
configuration details on temperature than on CREF. We specu-
late that this may be modulated to a large degree by differences
in the PBL schemes of each configuration, but this is a question
for future work in which individual parameterization schemes
are varied systematically. After 18-h lead time, clustering by
model configuration is substantially stronger than by driving
model, as also seen for CREF. Additionally, the two experi-
ments sharing the um configuration are more similar than any
other pair of experiments.

FIG. 13. As in Fig. 12, but for maximumAUC.

WEATHER AND FORECAS T ING VOLUME 38114

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 12/03/23 09:16 AM UTC



In aggregate, influences from both the driving model and
model configuration are evident in thermodynamic fields at
2 m AGL. Model configuration tends to play the larger role in
bias after diurnal heating commences at 16–18-h lead times,
which addresses our research question regarding the lead
times at which driving model influence loses primary impor-
tance in CAM solutions. During the crucial afternoon period
when the background environment modulating diurnally en-
hanced convection is established, um experiments tend sub-
stantially warmer and drier than wrf or fv3 experiments, with

fv3 exhibiting the coolest and moistest fields by a small margin
over wrf. RMSE for both fields suggests the fv3 configuration
has notably worse skill than um and wrf during the afternoon
and evening, similar to the result found for CREF FSSs.

4. Summary and conclusions

A suite of six deterministic CAM experiments was run in
real time over the central and eastern contiguous United
States for 32 cases in spring 2020. The experiments covered

FIG. 14. (a) Time–longitude diagram of diurnally averaged storm report frequencies, and (b)–(g) as in (a), but for UH for wrf-GFS,
wrf-UM, fv3-GFS, fv3-UM, um-GFS, and um-UM, respectively. In (a)–(e), the map at the top indicates the domain over which the time–
longitude diagrams are constructed. In (b)–(g), the spatial correlation between the forecast and observed storm report frequencies at
forecast hours 3–36 is denoted at the middle left. (h) Hourly domain-averaged storm report frequencies and UH for each set of forecasts.
The storm report frequencies are scaled by a factor of 700.
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FIG. 15. Mean additive bias for 2 m AGL temperature as a function of lead time, averaged over all 32 cases, using
(a) RTMA and (b) METARs as truth. (c),(d) As in (a) and (b), but for 2 m AGL temperature RMSE. (e),(f) As
in (a) and (b), but for 2 m AGL dewpoint additive bias. (g),(h) As in (a) and (b), but for 2 m AGL dewpoint RMSE.
Instantaneous forecasts are verified hourly at the top of the hour.
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three model configurations (using the FV3, UM, and WRF
dynamical cores), each of which was driven by ICs, LBCs, and
soil states from two global models (GFS and UM-Global).
Forecasts were initialized daily at 0000 UTC and ran out to a
lead time of 36 h. To evaluate the skill of and differences be-
tween experiments for convective forecasting, we analyzed
model QPF, CREF, UH, and thermodynamic forecast fields.
Our key research question involved the relative influence of
driving models versus model configurations upon these fields,
with a particular interest in how those influences may change
with lead time. We were also interested in documenting the
biases, skill, and character of these fields for the model config-
urations we used; these model configurations represent three
distinct modeling systems used internationally in operational
NWP, and our dataset provides a unique opportunity for a
relatively clean comparison.

a. Influence of model configuration versus driving
model with lead time

We analyzed the similarity between our six experiments
in terms of their forecasts for CREF (using correlations be-
tween neighborhood probability forecasts) and 2 m AGL

thermodynamic fields (using RMSDs). Our results showed
that these fields reliably clustered more by configuration than
driving model after about 18-h lead time, whereas the cluster-
ing by configuration and driving model was comparable at 6–
16-h lead times. Furthermore, clustering by configuration was
consistently stronger for the um than for fv3 and wrf. It seems
probable that the um configuration used herein has substan-
tially different model attractors in its solution space for state
variables directly impacting the evolution of deep moist con-
vection, relative to the fv3 and wrf configurations whose dy-
namical cores are more common in American NWP. This
suggests the um configuration could potentially add especially
useful diversity to a multimodel CAM ensemble, considering
that our um experiments}despite having solutions quite dif-
ferent from the others}performed competitively overall. In
terms of our key research question, these results suggest the
driving model’s influence may be superseded by the model con-
figurations for cold-start CAM forecasts around 16–18-h lead
time. Since our forecasts were always initialized at 0000 UTC,
these lead times corresponded to 1600–1800 UTC daily (early
afternoon in the central and eastern United States), so there
may also be a diurnal component to this handoff.

FIG. 16. Mean additive bias for (a) 700–500-mb lapse rate and (b) 850-mb temperature, averaged over all 32 cases
at 54 rawinsonde sites within the contiguous United States, at 24-h lead time (all valid at 0000 UTC). (c),(d) As in
(a) and (b), but for RMSE.
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FIG. 17. As in Fig. 10, but for 2 m AGL temperature RMSD instead of CREF r2. Larger RMSD implies less sim-
ilarity between experiments (opposite of r2 in Fig. 10). An asterisk after “CM” or “DM” indicates RMSD for that
group is smaller than RMSD for the other two groups at the 95% confidence level.
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FIG. 18. As in Fig. 17, but for 2 m AGL dewpoint.

R O B E R T S E T A L . 119JANUARY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 12/03/23 09:16 AM UTC



b. Biases and skill of our specific model configurations
and driving models

Key results for the specific model configurations and driv-
ing models represented among our experiments include:

• Verification of 24-h QPF accumulated over 12–36-h lead
times found the um-UM experiment performed best, but
examination of 3-h QPF for subintervals of this period re-
vealed that its superior skill is dominated by better forecasts
at lead times after 24 h; both um experiments displayed a
sharp drop out in skill for 15–24-h lead times.

• Further analysis of experiments’ diurnal precipitation cycles
showed a markedly early peak in QPF around 18–19-h lead
time for the um experiments, whereas fv3 and wrf experiments
matched observations with a peak around 23-h lead time.

• Skill for hourly CREF forecasts at the 40-dBZ threshold
was best for wrf experiments at most lead times, followed
by um and fv3.

• Skill for surrogate severe forecasts constructed from model
UH favored the fv3 and wrf configurations over the um,
with the um again exhibiting a large skill dropout during
the morning and early afternoon period coinciding with its
premature diurnal precipitation maximum.

• For both QPF and reflectivity, um and wrf experiments
driven by the UM-Global outperformed those driven by
the GFS; the opposite was true for fv3, suggesting a possi-
ble advantage to using a native-core driving model.

• Forecasts of 2-m AGL temperature and dewpoint were no-
tably less skillful for fv3 than um and wrf; all configurations
had a cold bias, while the sign of biases for moisture varied
with lead time and had smaller magnitudes.

• Biases in forecasts of 850-mb temperature at 24-h lead time
mirrored those found at 2 m AGL: all configurations were
cool-biased at both levels, with um least so and fv3 most.

Overall, the skill metrics we examined for these forecast
fields and thresholds yielded highly inconsistent rankings for
the three model configurations. Furthermore, although we
found some indication of UM-Global ICs providing superior
forecasts at very short (0–10 h) lead times relative to GFS
ICs, there was not evidence of a consistently better driving
model across the entire 36-h forecast cycle.

c. Conclusions and future work

Rather than pointing to a particular configuration or driv-
ing model as convincingly superior, our verification results in-
stead provide an argument in favor of model configuration
diversity in CAM ensembles of opportunity like NCEP’s
HREF. Based on the skill metrics presented herein, limiting
such an ensemble to any single configuration among the three
we analyzed would imply sacrificing skill for at least one
model field crucial to forecasting convective storms. Further-
more, three of the fields we analyzed (QPF, CREF, and UH)
are quite sensitive to the highly nonlinear processes of deep
moist convection initiation and evolution, so straightforward
postprocessing techniques may not easily compensate for con-
figuration-specific skill deficits represented in these fields. Sto-
chastically perturbed parameterizations (e.g., Jankov et al.

2019; Hirt et al. 2019), however, may soon offer a viable alter-
native solution for sampling model error without the develop-
mental and operational inefficiencies of maintaining multiple
siloed modeling systems.

We reiterate that this study grew opportunistically out of
the SFE2020 testbed experiment}future work could build
upon our testbed data by conducting even broader, more con-
trolled NWP experiments analogous to ours in a formal re-
search setting where a single institution controls all model
configurations, postprocessing, and data flows. Our dataset
nonetheless provided a unique side-by-side perspective on
three important modeling systems currently used for opera-
tional CAMs. An unexpected but valuable result we docu-
mented was the um’s erroneous diurnal convective cycle over
the CONUS, warranting further investigation into which as-
pect(s) of the configuration might be tunable to improve the
timing of convection initiation. Most crucially, our results sug-
gest a particular importance beyond 16–18-h lead times of
model configuration diversity in CAM ensembles and ensem-
bles of opportunity: while IC uncertainty may be of primary
importance for a watch-to-warning scale application like
Warn-on-Forecast (Stensrud et al. 2009, 2013), the next-day
convective forecast problem currently demands a robust focus
on model uncertainty.
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