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ABSTRACT: The High Resolution Ensemble Forecast v2.1 (HREFv2.1), an operational convection-allowing model
(CAM) ensemble, is an “ensemble of opportunity”” wherein forecasts from several independently designed deterministic
CAMs are aggregated and postprocessed together. Multiple dimensions of diversity in the HREFv2.1 ensemble mem-
bership contribute to ensemble spread, including model core, physics parameterization schemes, initial conditions (ICs),
and time lagging. In this study, HREFv2.1 forecasts are compared against the High Resolution Rapid Refresh Ensemble
(HRRRE) and the Multiscale data Assimilation and Predictability (MAP) ensemble, two experimental CAM ensembles
that ran during the 5-week Spring Forecasting Experiment (SFE) in spring 2018. The HRRRE and MAP are formally
designed ensembles with spread achieved primarily through perturbed ICs. Verification in this study focuses on composite
radar reflectivity and updraft helicity to assess ensemble performance in forecasting convective storms. The HREFv2.1
shows the highest overall skill for these forecasts, matching subjective real-time impressions from SFE participants. Analysis
of the skill and variance of ensemble member forecasts suggests that the HREFv2.1 exhibits greater spread and more
effectively samples model uncertainty than the HRRRE or MAP. These results imply that to optimize skill in forecasting
convective storms at 1-2-day lead times, future CAM ensembles should employ either diverse membership designs or
sophisticated perturbation schemes capable of representing model uncertainty with comparable efficacy.
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1. Introduction

During the most recent decade, convection-allowing models
(CAMs) have become a staple in the operational forecasting
toolbox, particularly for applications that benefit most from
their combination of high spatial resolution and explicit con-
vective structures. While deterministic CAMs have been run-
ning operationally since around 2010, the implementation of
their ensemble prediction system (EPS) counterparts has lag-
ged behind owing to a higher computational cost. Nonetheless,
experimental CAM EPSs were produced by the University of
Oklahoma (OU) Center for Analysis and Prediction of Storms
(CAPS) in real time as early as the mid-2000s (e.g., Xue et al.
2007; Kong et al. 2007; Levit et al. 2008) for evaluation in the
NOAA Hazardous Weather Testbed (HWT) Spring
Forecasting Experiment (SFE; Kain et al. 2003; Clark et al.
2012; Gallo et al. 2017). Through subsequent years, additional
CAM EPSs have been run on an experimental basis during the
SFE by the National Center for Atmospheric Research
(NCAR; Schwartz et al. 2015), NOAA’s Global Systems
Laboratory (GSL) (Dowell et al. 2016, hereafter D16), the OU
Multiscale data Assimilation and Predictability (MAP) group
(Johnson et al. 2015; Wang and Wang 2017; Wang et al. 2018;
Johnson et al. 2020), and others.
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By 2016, the number of EPSs contributed to the annual SFE
had grown large enough to justify instantiating the Community
Leveraged Unified Ensemble (CLUE; Clark et al. 2018), a
framework for scientific collaborators to set common standards
for key aspects of their systems such as the model grid and data
output format. The CLUE, in turn, has paved the way for more
systematic, controlled comparisons of its various subsets (e.g.,
Potvin et al. 2019). The different CLUE subsets are distin-
guished from one another not only by their basic model con-
figuration (e.g., dynamical core), but also by their membership
design approach. Most of the subsets (e.g., the NCAR, MAP,
and GSL systems) use a single, unified' model configuration
with ensemble spread achieved through initial condition (IC)
and lateral boundary condition (LBC) perturbations. However,
some subsets (e.g., the CAPS core ensemble; Clark et al. 2018)
use multiphysics configurations wherein the microphysics,
planetary boundary layer (PBL), and/or land surface model
(LSM) parameterization schemes also differ. Separate from
the CLUE, an especially diverse class of CAM ensembles,

! In this paper, we use ““unified” to describe an ensemble whose
members all share the same dynamical core and model configura-
tion; specified differences between members are limited to applied
perturbations (e.g., to the initial and lateral boundary conditions of
model state variables, or to variables internal to physics parame-
terization schemes).
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“ensembles of opportunity” (EOs), have also been evaluated
in SFEs since 2011. The term EO herein is the same as the
“poor man’s ensemble” (e.g., Ebert 2001; Arribas et al. 2005;
Casanova and Ahrens 2009), which can be characterized as
several independently designed, deterministic numerical weather
prediction (NWP) models combined and postprocessed as
an ensemble. Such ad hoc systems typically violate the ideal
EPS property of equally likely member solutions (Leith 1974;
Ziehmann 2000) and require extra postprocessing tech-
niques for maximum utility (e.g., interpolation to a common
grid, separate bias correction of each member, etc.). In the
context of CAMs, this ensemble design strategy originated
from the Storm Prediction Center (SPC) with the Storm-
Scale Ensemble of Opportunity (SSEO; Jirak et al. 2012).
The SSEO comprised seven deterministic CAMs from sev-
eral modeling centers that used substantially different
model configurations, and of which only some were even
operationally supported. The SSEO was evaluated yearly in
the SFE until it was supplanted by the High Resolution
Ensemble Forecast system, version 2 (HREFv2; Roberts
et al. 2019, hereafter R19), NOAA’s first operational CAM
ensemble, in late 2017. HREFv2 may be regarded as the
formalization of SSEO’s design philosophy, as its eight
members’ configurations closely mimic several of SSEQO’s
members; albeit with finer, more uniform horizontal grid
spacing of O(3) km, and a closely synchronized run schedule
that is operationally supported. A commonality of SSEO and
HREFV2 is the inclusion of time-lagged members, which adds
yet another element of membership diversity alongside
member-to-member differences in dynamical core, phys-
ics, and ICs/LBCs.

Although the relatively high spatial resolution of CAM
systems benefits NWP skill for a wide array of atmospheric
phenomena, CAM development has been motivated in par-
ticular by the opportunity to predict convective storms with
realistic structures and impacts on their surrounding environ-
ment. For example, CAM forecasts of convective mode, cov-
erage, and severe weather hazards have been the primary
focus of subjective and objective evaluations conducted in
the HWT SFE, which in turn have guided CAM development
pathways (e.g., D16; R19; Gallo et al. 2019). In the course of
these evaluations, a consistent theme has emerged of EOs
receiving among the highest scores in subjective participant
ratings and limited objective verification metrics, when
compared against other CAM EPSs lacking such configura-
tion diversity (e.g., Jirak et al. 2015, 2016). Although the
SSEO was largely born of necessity at a time when no for-
mally designed CAM EPSs were available operationally, its
consistent success in SFE evaluations motivated the decision
to use a similar membership design for the operational
HREFv2.

While SFE evaluations have highlighted the relative success
of convective storm forecasts from CAM EOs, the reasons for
this success have not yet been investigated rigorously. For
coarser-grid EPSs, it has been demonstrated that accounting
for model uncertainty separately from IC uncertainty can gen-
erate larger spread and superior forecasts for traditional syn-
optic fields (Du et al. 1997, Stensrud et al. 2000). Other studies

FORECASTING VOLUME 35
have suggested that employing multiple models (Ziehmann
2000; Eckel and Mass 2005; Johnson and Swinbank 2009) or
physics schemes (Jankov et al. 2005; Hacker et al. 2011) may be
particularly effective ways of capturing this uncertainty. More
recently, the value of representing model uncertainty within a
CAM ensemble using variations in model core (Clark et al.
2008; Johnson et al. 2011; Clark 2019), PBL parameterizations
(Schwartz et al. 2010; Johnson et al. 2011; Loken et al. 2019),
microphysics parameterizations (Clark et al. 2008; Schwartz
et al. 2010; Duda et al. 2014; Loken et al. 2019), LSM param-
eterizations (Duda et al. 2017), and time-lagging (Mittermaier
2007) has been shown in the context of forecasting synoptic
and precipitation fields to improve ensemble skill, typi-
cally through increasing spread in underdispersive sys-
tems. Gasperoni et al. (2020) conducted experiments to
compare different methods of sampling model uncertainty
in the context of mutliscale ICs generated by the Gridpoint
Staistical Interpolation (GSI; Wu et al. 2002; Shao et al.
2016) ensemble—variational (EnVar) system (e.g., Wang
2010; Wang et al. 2013; Wang and Wang 2017). They found
that both their multimodel and multiphysics configura-
tions were superior to their single-model single-physics
configuration. It was also found that a multimodel design
tends to perform best at early lead times, whereas multi-
physics with stochastic physics tends to be best for later
lead times.

With these findings considered, there is some a priori reason
to suspect that CAM EOs—which at least attempt to repre-
sent uncertainty across several of these relevant dimensions
simultaneously—may demonstrate better spread characteristics
and more meaningful probability density functions (PDFs)
than their fully unified EPS counterparts, which generally only
represent IC/LBC uncertainty. Although this is an area where
EOs offer a clear benefit over unified EPSs, the latter have
their own advantages: they enable simpler, more efficient
technical implementations and modularity, which in turn fos-
ters collaborative development across the NWP community.
Furthermore, a unified EPS with IC perturbations prescribed
around one analysis typically only requires a single data as-
similation (DA) system, yielding another important efficiency
advantage with respect to intellectual investment, computa-
tional resources, and maintenance overhead. The desire to
fuse the benefits of both ensemble types has spurred recent
attempts to develop stochastically perturbed parameteriza-
tions (e.g., Jankov et al. 2019; Hirt et al. 2019; Wastl et al.
2019), which could obviate the need for diverse configuration
choices within an EPS’s membership to sample physics un-
certainty. In the present study, we aim to quantify differences
between EOs (represented using the HREF) and unified,
formally designed CAM EPSs (represented using two CLUE
subsets) with respect to their skill and spread in forecasts of
convective storms.

The paper is organized as follows. Section 2 describes da-
tasets and analysis methods. Sections 3 and 4 present analyses
of composite reflectivity and surrogate severe forecasts, re-
spectively. Section 5 summarizes our findings, draws relevant
conclusions, and offers directions for future research on
related topics.
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2. Methodology
a. Datasets

1) NWP FORECAST DATASETS

In this study, we verify and compare CAM ensemble fore-
casts from the 2018 HWT Spring Forecasting Experiment
(hereafter SFE2018), which ran weekdays from 30 April to
1 June. All CAM ensemble forecasts examined herein were
initialized at 0000 UTC and forecast lead times of 12-36 h are
verified. Owing to occasional missing NWP and/or observational
data, our final verification dataset covers 21 of the 24 days
SFE2018 operated: 30 April, 1-4 May, 7-8 May, 10-11 May, 14—
18 May, 21 May, 24-25 May, 29-31 May, and 1 June.

The HREFV2 is an eight-member multimodel, multiphysics,
multi-IC CAM EO with time lagging. Several independently
developed deterministic CAMs compose the HREFv2 mem-
bership. Herein, we verify the HREFv2.1, an HREF variant
with two additional members (for 10 members total): the
HRRR and HRRR —6h. The HREFv2.1 has been processed
in real-time at the NOAA Storm Prediction Center since April
2019, and showed modestly improved skill over the HREFv2 in
forecasting convective storms from subjective and limited ob-
jective verification during SFE2018 (Gallo et al. 2018). Further
membership configuration details are given in Table 1, while a
diagram of the time-lagging approach is displayed in Fig. 1. The
HREFv2.1 is available as a 10-member ensemble out to a lead
time of 30 h, and as a 9-member ensemble out to 36 h (with the
HRRR —6h member dropping out after 30h). Because the
native model grids differ between some members, all data are
interpolated to a common 3-km grid using a nearest-neighbor
approach before ensemble postprocessing. It is important to
note that the HREFv2.1 verified herein uses a different
membership? than the HREFv2 produced at NCEP and dis-
tributed via public channels, so our results will not necessarily
apply to that configuration in a strict sense.

Two® CLUE subsets are compared to the HREFv2.1: the
High Resolution Rapid Refresh Ensemble (HRRRE; D16),
and the MAP Ensemble (Johnson et al. 2015; Wang and Wang
2017, Wang et al. 2018; Johnson et al. 2020). Both the HRRRE
and MAP are unified, formally designed CAM EPSs. Furthermore,
as both systems were designed within the CLUE framework for
SFE2018, they largely shared model configuration details: the
Advanced Research version of the Weather Research and

2 Specific differences between SPC’s HREFv2.1 and NCEP’s
HREFV2 are as follows: 1) HREFv2.1 adds two new HRRR mem-
bers, increasing the member count from 8 to 10; 2) HREFv2.1 uses a
12-h time lag NAM Nest member, where HREFV2 uses a 6-h time lag
member; and 3) HREFV2 officially assigns decreased weight to lagged
members (and increased weights to nonlagged members) in com-
puting ensemble mean fields. See Table 1 for additional information.

3 Additional CLUE subsets, including the aforementioned NCAR
ensemble, were also available in SFE2018; the MAP and HRRRE
are selected for analysis herein because they received the best
subjective ratings from SFE participants among the unified en-
sembles participating in the CLUE.
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Forecasting (WRF) Model (WRF-ARW; Skamarock et al.
2008) dynamical core was employed at 3-km horizontal grid
spacing using the Mellor-Yamada-Nakanishi-Niino (MYNN;
Nakanishi and Niino 2004) PBL and Thompson aerosol-aware
(Thompson and Eidhammer 2014) microphysics parameteri-
zations. The HRRRE comprised a 36-member ensemble DA
system that was initialized at 0300 UTC daily from a Global
Forecast System (GFS) background with GDAS perturba-
tions; these members were then cycled hourly via an ensemble
Kalman filter (EnKF) using conventional and radar data,
until at 0000 UTC nine of the members launched 36-h fore-
casts. The preceding 1800 UTC GFS provided mean LBCs
upon which random perturbations were added to ensemble
members. Also, in the HRRRE, perturbations were intro-
duced to the soil moisture field during the first minute of
each day’s DA cycling (0300-0301 UTC), representing ef-
fectively another type of IC perturbation. The MAP used a
41-member DA ensemble that ran for 6 h (1800-0000 UTC
daily) prior to the initialization of its 10 forecast members at
0000 UTC. Its DA was an EnKF-3DEnVar hybrid system
based on GSI that assimilated both conventional (hourly
from 1800 to 0000 UTC) and radar (every 20 min from 2300
to 0000 UTC) observations. Different from HRRRE, the
ensemble LBCs for MAP during DA and ensemble forecasts
were provided by members of NCEP’s Global Ensemble
Forecast System (GEFS) and Short Range Ensemble Forecast
(SREF). In the MAP forecast system, unlike the HRRRE, there
is a control member (designated MAP 01 hereafter) taking its
ICs from an EnVar analysis, whereas the other nine members
contain specified IC perturbations from cycled and recentered
GSI EnKF; a consequence is that smaller forecast error may be
expected from the control member when aggregated over many
cases (Johnson et al. 2020). During DA cycling, MAP pertur-
bations were recentered around the control member prior to
each cycle, while recentering was not performed during the
HRRRE’s DA. More complete details of the HRRRE are
available in D16, and of the MAP in Johnson et al. (2015), Wang
and Wang (2017), Wang et al. (2018), and Johnson et al. (2020).
In summary, the HRRRE and MAP have nearly identical model
configurations, but their respective approaches to DA and
IC/LBC perturbation strategies differ significantly; the HRRRE
also includes perturbations to soil moisture ICs, while MAP
does not.

In this study, we verify two forecast fields: instantaneous
composite radar reflectivity (CREF) and hourly maximum
2-5km above ground level updraft helicity (UH; Kain et al.
2008). UH is used to construct surrogate severe probabilistic
forecasts (Sobash et al. 2011, 2016b), which are smoothed
neighborhood maximum ensemble probability (NMEP; Schwartz
and Sobash 2017) fields based on UH exceedence thresholds
[more information is given in section 2b(1)]. For CREF, similar
NMEPs are calculated to assess convective coverage, timing,
and location. Thus, the bias-corrected CREF field is thresh-
olded at 40 dBZ, above which values are typically associated
with deep moist convection. Verification of UH supplements
this by focusing more narrowly on rotating convective updrafts,
which are responsible for a disproportionate share of severe
weather hazards (e.g., Duda and Gallus 2010).
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TABLE 1. Membership configuration of the HREFv2.1. HRW and NAM refer to High Resolution Window and North American
Mesoscale Forecast System runs, respectively. Dynamical cores used include the Advanced Research and Forecasting version of the
Weather Research and Forecasting Model (WRF-ARW; Skamarock et al. 2008) and the Nonhydrostatic Multiscale Model on the B Grid
(NMMB; Janji¢ and Gall 2012). PBL schemes used include the Mellor-Yamada—Nakanishi-Niino (MYNN; Nakanishi and Niino 2004),
Yonsei University (YSU; Hong and Lim 2006), and Mellor-Yamada-Janji¢ (MYJ; Janji¢ 1994) formulations. Microphysics schemes
include the Thompson (Thompson et al. 2008), WRF single-moment 6-class (WSM6; Hong et al. 2006), Ferrier (Ferrier et al. 2011), and
Ferrier—Aligo (Aligo et al. 2018) formulations. IC backgrounds and LBCs are given as the parent NWP model whose analysis or forecast
state is used; ““—1 h” here indicates that the parent run initialized an hour earlier than the CAM run produces the ICs/LBCs. The HRRR
and NAM Nest perform cycled DA using the specified parent model as a first-guess background (Gustafsson et al. 2018), while the HRW
members simply interpolate the specified parent’s ICs.

Member Core PBL  Microphysics Time lagging IC background LBCs dx (km) In NCEP HREFv2?
HRRR WRF-ARW MYNN Thompson No RAP —1h RAP -1h 3.0 No
HRRR —6h WRF-ARW MYNN Thompson 6-h RAP -1h RAP -1h 3.0 No
HRW ARW WRF-ARW YSU  WSM6 No RAP GFS —6h 32 Yes
HRW ARW —-12h  WRF-ARW YSU  WSM6 12-h RAP GFS —6h 32 Yes
HRW NMMB NMMB MYJ  Ferrier No RAP GFS —6h 32 Yes
HRWNMMB -12h NMMB MYJ  Ferrier 12-h RAP GFS —6h 32 Yes
HRW NSSL WRF-ARW MYJ  WSM6 No NAM NAM -6h 32 Yes
HRW NSSL —12h  WRF-ARW MYJ  WSM6 12-h NAM NAM -6h 32 Yes
NAM Nest NMMB MYJ  Ferrier-Aligo No NAM Nest NAM 3.0 Yes
NAM Nest —12h NMMB MYJ  Ferrier-Aligo 12-h NAM Nest NAM 3.0 No (—=6h)

For instantaneous CREF, NMEPs are evaluated hourly for
lead times of 13-30h,* corresponding to the period from
1300 UTC on the initialization date to 0600 UTC on the fol-
lowing date. Surrogate severe forecasts are generated and
evaluated for the time-maximum UH values over the convec-
tive day, which we define as the 24-h period beginning at
1200 UTC on the initialization date. For any given date, one
surrogate severe field covers the entire convective day; this
field represents the expected coverage of rotating storms
throughout the whole diurnal cycle. Therefore, our CREF
verification is much more sensitive to timing errors than our
surrogate severe verification. Together, the CREF and UH
verification should capture most of what an outlook forecaster
at the SPC would be responsible for anticipating.’

Verification of CREF forecasts is performed over the
CONUS, as well as the SFE daily domains. The daily domain
for each date is a rectangular area of 15° longitude by 8.72°
latitude manually selected to cover a relevant convective
forecast challenge (typically, though not always, near the
highest SPC convective outlook risk category). Surrogate se-
vere forecasts are always verified over a domain that covers the
eastern two-thirds of the CONUS.

2) OBSERVATION DATASETS FOR VERIFICATION
To verify surrogate severe forecasts, we utilize preliminary
local storm reports (LSRs) from the National Weather Service

*The most restrictive member of HREFv2.1 (HRRR —6h;
Fig. 1) is only available out to a 30-h lead time, and we only wish to
verify hourly CREF forecasts with all 10 members available.

> Identifying convective mode (e.g., linear versus multicellular
versus supercellular) is also critically important for these types of
forecasts. While no mature, practical methods exist for objective
verification of mode, our surrogate severe verification should gen-
erally reward correct forecasts of rotating storms (or lack thereof).

(NWS). Reports of tornadoes, severe hail (exceeding an inch
in diameter), and damaging wind gusts (exceeding 58 mph,
if measured) are considered. LSRs are mapped onto an
80-km grid that is everywhere zero, except grid cells con-
taining one or more LSRs are assigned a value of 1. This
procedure may be interpreted as a neighborhood search
that is implicit in the regridding. This field is identical to the
OSRSI field used for surrogate severe verification in Sobash
et al. (2011, hereafter S11). A single verification field is gen-
erated for each convective day using all LSRs that occurred
between 1200 UTC on the verification date and 1200 UTC on
the following date.

To verify CREF forecasts, the Merged Reflectivity Quality-
Controlled Composite (MRQCC) product from the Multi-
Radar Multi-Sensor (MRMS; Smith et al. 2016) system is
employed. MRQCC is derived by blending data from over 140
operational WSR-88D radars across the United States and
over 30 additional radars in Canada. Our largest verification
domain for CREF is the continental United States (CONUS),
which is covered by the MRMS mosaic. When verifying a
model CREF probability field, the corresponding MRMS field
is first regridded onto the 3-km model grid. Then, a binary field
is computed that is everywhere 0, except it is set to 1 throughout
an 80km X 80km neighborhood surrounding each point
with MRMS reflectivity exceeding 40 dBZ. Conceptually,
we are producing the same type of binary verification field
for CREF forecasts as for surrogate severe, except the CREF
verification field is defined on the 3-km model grid (instead of
an 80-km grid).

b. Verification methods

1) COMPUTATION OF BINARY AND PROBABILISTIC
FIELDS
As described above, both the forecasts and observations
are thresholded and transformed into binary (and also, in
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5 May 6 May

0000 UTC 1200 UTC 0000 UTC
| | |

\ HRW ARW -12h (1200 UTC HiresW ARW)

\ HRW NSSL -12h (1200 UTC HiresW NSSL) |
\ HRW NMMB -12h (1200 UTC HiresW NMMB) |

\ NAM Nest -12h (1200 UTC NAM CONUS Nest) |

\ HRRR -6h (1800 UTC HRRR) |

\ HRW ARW (0000 UTC HiresW ARW)

\ HRW NSSL (0000 UTC HiresW NSSL)

HRW NMMB (0000 UTC HiresW NMMB) |

NAM Nest (0000 UTC NAM CONUS Nest)

\ HRRR (0000 UTC HRRR) |

HREFv2.1: 0000 UTC cycle for 4 May

FIG. 1. Deterministic CAM membership in a hypothetical 0000 UTC run of the HREFv2.1.
On each bar, the HREF member name is given in bold blue text, while the member’s de-
terministic run name is given in italicized black. The dashed blue box contains the forecast
times from each member that participates in the 36-h EO forecast. Each deterministic
member runs out to a lead time of at least 48 h, except for the HRRR, whose forecast ends

at 36 h.

some cases, smoothed probabilistic) fields before verification
proceeds, a process illustrated in Fig. 2. In all cases, the
neighborhood of grid points is searched for its maximum
value; the remaining distribution of values in the neighbor-
hood does not impact verification. The neighborhood maxi-
mum operation addresses the question of whether any storm
or instance of severe weather exists nearby, which closely
mimics the forecast problem for SPC convective outlook
forecasters, who issue probabilities for severe weather oc-
currence within 40km of a point. For observations (LSRs
or MRMS), the resulting thresholded binary field (Fig. 2b) is
used directly for verification. For forecasts (CREF or UH), an
additional smoothing step is applied using a two-dimensional
Gaussian kernel as in Eq. (1) of Hitchens et al. (2013). The
resulting smoothed field (Fig. 2c) contains a continuous dis-
tribution of fractional values, which may be interpreted as
probabilities of threshold exceedance in the neighborhood
(as in S11). In the case of surrogate severe forecasts, nu-
merous iterations of the field are computed using a range of
o values from 40 to 300 km. Thus, our surrogate severe veri-
fication allows us to assess how forecast skill varies with the
smoothing length scale. In the case of CREF, this approach is
computationally prohibitive owing to the much finer 3-km
verification grid, so we only produce NMEPs with o = 40 km;
this value is commonly used for operational SPC CAM
guidance (e.g., R19).

Verification of individual ensemble member forecasts in-
volves comparing their smoothed probability field against the
corresponding binary verification field. For verifying an en-
semble system, we represent its forecast as the ensemble mean
of smoothed member probability fields, which is equivalent to
the smoothed NMEP field (e.g., R19). For the remainder of this
paper, NMEP always refers to the smoothed version, as un-
smoothed NMEPs are not verified herein.

When verifying threshold exceedance probabilities for an EO
such as the HREF, separate bias correction of each member is
desirable in order to retain only “good spread”—ensemble
variance that improves forecast skill metrics and owes to di-
verse model attractors and/or plausible IC uncertainty, rather
than disparate member biases that widen the PDF only
through systematically offsetting errors—from the diverse
configuration choices (Eckel and Mass 2005). Furthermore, in
the case of UH, there is no truth field available whose mag-
nitude is directly comparable to the forecast quantity (which
itself can vary widely with model grid spacing and other
configuration choices). To address these challenges, we
compute climatologies for each member of each ensemble
over the entire verification dataset for both CREF and UH.
These climatologies allow us to map member CREF and UH
values into climatological percentile space, where they can
then be treated equitably across members (and even across
different ensembles). This is fundamentally similar to the
“quantile mapping” approach (e.g., Hopson and Webster
2010; Voisin et al. 2010), with the distinction that both our
observed and forecast cumulative distribution functions are
formed from the set of all grid points across the domain and
over all 21 days we are verifying. Before computing the UH
climatology, 3-km model values are first remapped to the
80-km surrogate severe grid such that each 80-km grid cell is
assigned the maximum value among all 3-km grid cells inside
it (this regridding is implicitly a neighborhood-maximum
operation). For CREF, the 3-km model gridpoint values are
used for the climatology. When computing thresholded
forecast fields, all thresholds are based on percentiles from
the climatology. In the case of CREF, for each ensemble
member, whichever percentile matches the 40-dBZ threshold
in the MRMS dataset is used as the forecast threshold. More
details are given in appendix.
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(a) Observedlforecast CREF

2

V.'F'W

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
b) Binary neighborhood field (CREF >40 dBZ, r=40 km)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FI1G. 2. Example of computing thresholded probability fields
from a CREF field. (a) The observed or forecast CREF. (b) A
binary field whose value at each point is 1 if the threshold is ex-
ceeded in the local neighborhood, and 0 otherwise. (¢) The result of
applying a Gaussian smoother to (b), which gives a continuous field
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2) SKILL SCORES AND METRICS

Standard metrics for probabilistic forecast verification
are employed herein. The first is the relative operating
characteristic (ROC; Mason 1982) area under the curve
(AUC). For computing the AUC, trapezoidal integration is
employed within the Model Evaluation Tools (MET; Fowler
et al. 2017) 7.0 software suite. AUC measures the ability to
discriminate between events and nonevents; it is condi-
tioned on the observations (i.e., whether or not the event oc-
curred) and is insensitive to forecast bias. AUC ranges from 0
to 1: a value of 1 is a perfect forecast, while 0.5 indicates no
skill, and 0.7 is sometimes used as the minimum score for a
useful forecast.

The fractions skill score (FSS; Roberts and Lean 2008, here-
after RO8) is computed for both the surrogate severe forecasts
and CREF probabilities. However, a notable departure from
the RO8 definition is that at each grid point, the fractional
probability value from our forecast (either a smoothed mem-
ber probability field or ensemble NMEP) is substituted for the
true neighborhood fractional coverage; this is similar to the
approach of Schwartz et al. (2010). Our formulation of FSS is as
follows:

2
(P = Bog)
, (1)

(PF(I) +Bp)

FSS=1-1

M=z L=

1

where Pr;) and By are the forecast probability and observed
binary value, respectively, at the ith grid point. Note that we
use the observed binary field, rather than a smoothed (e.g.,
practically perfect; Schwartz et al. 2010) field, as truth. This
avoids potential penalization of spatially precise forecasts
due to ad hoc smoothing of observations whose location is
actually known with certainty (an issue discussed at length in
section 4). Our version of FSS is closely related to the Brier
skill score (Brier 1950); the two are differentiated chiefly by the
reference forecast for FSS considering both the truth and
forecast fields. Specifically, the reference forecast represents
one in which the mean squared values of both the forecast and
truth fields are held constant, but they are redistributed in
space to be maximally nonoverlapping; in other words, the
worst possible forecast that could be made while retaining the
existing distribution of fractional values in the probability
forecasts and observed binary fields. FSS ranges from 0 to 1: a
value of 1 is a perfect forecast, and 0 is the worst possible
forecast containing the same distribution of forecast and ob-
served fractions. Although 0.5 has been suggested as the lower
limit for a useful forecast in the literature, we caution that this
does not apply to our formulation of FSS, given: 1) the
neighborhood-maximum operation in our verification, which
departs from the neighborhood-coverage-based definition in
RO8; and 2) our use of a binary truth field. Because of (2), we

«—

with values in the range [0, 1]; these values can be interpreted as
probabilities. For ensembles, NMEPs are equivalent to the en-
semble mean of the member probability fields.
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expect substantially lower FSS scores® than in studies that use a
fractional truth field, so our FSS scores should not be compared
directly with such values. For CREF FSSs averaged over all
cases in the verification dataset, we compute 90% confidence
intervals (CIs) for each ensemble mean and member forecast
using the bootstrapping technique described in Wilks (2011)
with 10000 resamples.

To evaluate the reliability of our CREF probability fore-
casts, we create attributes diagrams (Hsu and Murphy 1986).
Additionally, we compute the so-called reliability component
of the Brier score as follows:

1< _
BSgeL = EZ{ N(f, = xi)z ’ )

where / is the number of probability bins; # is the total number
of grid points in the dataset; N; is the number of grid points with
probabilities in bin i; f; is the forecast probability value asso-
ciated with bin i (e.g., f; = 0.2 for the bin 0.15 < P < 0.25); and
X; is the base rate of the observed binary field in bin i (i.e., the
frequency of event occurrence when probabilities in that bin
were forecast). BSggy is O for a perfectly reliable forecast and
increases as reliability (weighted by bin forecast frequency)
becomes worse. In the same manner as described for CREF
FSSs, we compute 90% Cls for BSggr and for the base rate
within each bin.

In addition to verifying NWP forecast skill, we also apply
spread—skill metrics traditionally used for continuous vari-
ables (e.g., temperature) to our CREF probability forecasts.
Specifically, we compute the mean squared error (MSE) and
mean ensemble variance (MEV) for each of the 378 hourly
CREF snapshots. In this context, “mean” refers to the spatial
average over the verification grid (e.g., the mean statistic
for all grid points in the CONUS at a particular verification
time); “‘error’” refers to the difference between the en-
semble NMEP value and practically perfect’ value at a grid
point; ‘‘variance’ is computed for the set of all member
probability values at the grid point; and terms similar to
Bessel’s correction are included when calculating MSE and
MEYV, following appendix B of Eckel and Mass (2005).
Through the neighborhood-maximum operation we are
transforming a field of discontinuous, sparse features
(storms with CREF > 40 dBZ) into a more continuous field
(viz., the probability that a storm exists in the general area).
After this transformation, we then examine MSE and MEV
under the implicit assumption that the traditional spread—
skill relationship can be expected to hold; this assumption may be

® Testing multiple formulations of the neighborhood-maximum-
based FSS for the same set of cases revealed that an FSS of ~0.65
using a smoothed truth field is equivalent to an FSS of ~0.4 using a
binary truth field. This is valid for an 80 km X 80 km neighborhood
and a smoothed field with o = 40 km.

7 Strictly for this spread-skill analysis, we apply a Gaussian
smoother to the observed binary field (using the same o- = 40 km as
the forecast fields), yielding a ““practically perfect” truth field. This
is necessary in order to ensure MSE and MEYV are directly com-
parable in magnitude.
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explored more rigorously in future work to elucidate precisely
what the MSE-MEV relationship signifies under different
conditions for NMEPs. We also compute the consistency ratio
(CR), defined as the ratio of the MEV to MSE for the aggre-
gate of all forecast cases in our dataset: a system with perfect
statistical consistency has a CR of 1, while CR less than 1 in-
dicates aggregate ensemble underdispersion, and greater than
1 indicates overdispersion.

3. Verification of composite reflectivity forecasts

a. Forecast skill

Figure 3a presents FSSs for CREF forecasts aggregated over
all 378 snapshots for the CONUS domain. For each of the three
ensembles (bottom), the mean FSS of its member probability
fields is displayed as a color-coded bar outlined in black, while
the FSS of the ensemble NMEDPs is displayed as a red bar. The
difference between the member mean (color-coded) and
NMEP (red extension) FSS, which we will call FSSineq (i-€.,
the skill gained by the ensemble relative to its constituent
member solutions), is annotated to the right of the bars. In
some sense, FSSy,inca should indicate how effectively an en-
semble is utilizing its members to fill out a realistic forecast
PDF. Unsurprisingly, there is more variability in skill among
the probability fields of HREFv2.1 members than HRRRE or
MAP members, confirming that equal likelihood of member
solutions cannot reasonably be expected for this type of EO.
For the ensemble NMEPs, HREFv2.1 performs best (0.49;
90% CI nonoverlapping with the other two ensembles), while
HRRRE (0.42) and MAP (0.45) lag behind. However, it is
striking how much smaller the gap in skill is between the three
systems with respect to the mean of their member forecasts:
indeed, HREFv2.1 ensemble NMEPs show roughly double the
FSSgainea (+0.07), compared to HRRRE (+0.04) or MAP
(+0.03). When focusing on the SFE daily domains (Fig. 3b),
performance differences between systems and members are
broadly similar to those over the CONUS. One difference
over the daily domains is that MAP members are actually
more skillful overall than HREFv2.1 members, resulting in
statistically similar NMEP FSSs for those two systems.
Nonetheless, HREFv2.1 again exhibits substantially larger
FSSgainca- Within MAP, MAP 01 shows consistently better
skill than other members, suggesting the analysis produced
by the EnVar control is more skillful than the recentered
EnKF analyses.

Figures 4a and 4b show ROC AUC values for the CONUS
and SFE daily domains, respectively. The relative differences
between members and ensembles are once again similar: MAP
members outperform HREFv2.1 and HRRRE members over
the SFE daily domains (with comparable skill over the CONUS),
but the ensemble NMEPs are most skillful from HREFv2.1.
AUCqincq is larger for HREFv2.1 than for HRRRE or MAP
by nearly a factor of 2.

In summary, the skill scores for CREF probability fields
have the following properties:

1) CAM skill is modestly better when computed over the
entire CONUS than when limited to the SFE daily domains;
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FIG. 3. For CREF > 40 dBZ smoothed probability fields (for members) and NMEPs (for ensembles), mean FSS
over the 378 hourly snapshots for (a) CONUS and (b) SFE daily domains. For the three ensembles at bottom, the
bolded, color-coded bar shows the mean FSS of its individual member forecasts (each of which appears as its own
bar above), while the red bar extends to the FSS for the ensemble mean forecast. The length of the red extension
thus represents FSS,,in.4, Which is also annotated as red text to the right. CIs at the 90% level for FSS values are
shown as black error bars, and separately for FSS,incq Values as cyan error bars (bottom three bars only; these Cls
are quite small and in some cases appear as a single cyan line).

this is presumably due to the abundance of “‘easy nulls”
over the CONUS.

2) Individual member skill, in the aggregate, is best for MAP
members, followed closely by HREFv2.1 members, and
then HRRRE members.

3) Ensemble skill, in the aggregate, is best for HREFv2.1,
followed by MAP, and then HRRRE.

4) The skill added by the ensemble NMEPs over their con-
stituent member probability fields is substantially larger for
HREFv2.1 than for MAP or HRRRE, suggesting HREFv2.1
contains more useful ensemble spread with respect to
convective storm coverage and placement.

5) The variation in skill among individual HREFv2.1 mem-
bers is larger than that among MAP or HRRRE members.

b. Forecast spread

To evaluate how each member is contributing spread to its
parent ensemble, the coefficient of determination (r%; the
square of the Pearson correlation coefficient) is computed for

the CREF probability forecasts of every possible pair of
members within each system. For an N-member ensemble,
there are N(N — 1)/2 such pairs. Correlation matrices for the
CONUS domain are presented in Figs. Sa—c. In terms of the
mean r* among all member pairs, HREFv2.1 is least correlated,
followed by HRRRE, and then MAP. For HRRRE and MAP,
the strength of correlation between one pair of members is
quite similar to any other possible pair; an exception is that
MAP 01 (the MAP control member) is more similar to its
sibling members than they are to one another, as expected for a
control member. For HREFv2.1, however, substantial differ-
ences in r” values exist among member pairs. The most similar
pair, HRRR and HRRR —6h (two identically configured runs
initialized 6 h apart), have an /* value comparable to pairs of
HRRRE members. Otherwise, HREFv2.1 correlations are
relatively low, with some clustering evident by model core
(WRF-ARW versus NMMB) and ICs (NAM versus RAP).
When member probability forecasts are compared over only
the SFE daily domains (Figs. 5df), * values decrease modestly
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FIG. 4. As in Fig. 3, but for ROC AUC, and ClIs are omitted.

for all pairs compared to the CONUS domain. Over the daily
domains, the mean correlation magnitude for MAP pairs
(2 =0.46) is fully twice as large as for HREFv2.1 pairs
(2 = 0.23), suggesting that meaningful spread in HREFv2.1 is
substantially larger than in MAP (which includes no sampling
of model uncertainty).

Another perspective on the spread contributed by each en-
semble member can be gained by identifying grid points at
which the member’s smoothed probability field differs from its
parent ensemble’s NMEP by a value exceeding some thresh-
old. We will call such points “outlier points:”” here, the member
is either 1) predicting storms in an area where most other
members do not, or 2) failing to predict storms in an area where
most other members do. Gridpoint frequencies for outlier
points in each ensemble member are given in Figs. 6a—c for the
CONUS, and in Figs. 6d—f for the SFE daily domains. For the
most stringent threshold of 0.7 (Figs. 6c,f), over both domains,
the typical HREF member has about three times as many
outlier grid points in the verification dataset as does the
typical HRRRE or MAP member. This discrepancy is some-
what less pronounced for thresholds of 0.6 (Figs. 6b,e) and 0.5
(Figs. 6a,d). Nonetheless, it is clear that a typical HREF
member departs sharply from its parent ensemble on fore-
casting storm occurrence or nonoccurrence more frequently
than a typical HRRRE or MAP member. In terms of the

ensemble PDF, this means long tails are more often present in
HREFv2.1.

Figure 7 presents an attributes diagram for NMEPs from the
three ensembles over the CONUS. HREFv2.1 exhibits re-
markably good reliability, while HRRRE and MAP are both
somewhat overconfident (i.e., low NMEPs are underforecasts
and high NMEPs are overforecasts). BSggr. (for which zero
represents perfect reliability) is 5 times larger for HRRRE, and
7 times larger for MAP, than for HREFv2.1. For the SFE daily
domains (Fig. 8), qualitatively similar results hold. However,
there is some notable degradation of reliability for NMEP >
0.6 in HREFv2.1, where it becomes similarly overconfident to
HRRRE and MAP. Nonetheless, differences in BSgg;. favor
HREFv2.1 by about an order of magnitude over the HRRRE
and MAP. Also noteworthy in the bin histograms is the un-
derrepresentation of HREFv2.1 in both the smallest and
largest probability bins (P = 0.05 and P > 0.95, respectively), a
reflection of its more frequent forecasts falling into interme-
diate bins associated with meaningful member disagreement.

Figure 9a presents CR as a function of lead time over the
full verification period and full CONUS. The CR tends to in-
crease during the diurnal convective maximum (lead times of
18-26 h, corresponding to 1800-0200 UTC daily), but generally
does not vary in time by more than about 30% for a given
ensemble. HREFv2.1 (CR =1.01) demonstrates remarkably
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FIG. 5. Matrices of the coefficient of determination (+*) between ensemble member CREF > 40 dBZ probability
fields for (a) HREFv2.1, (b) HRRRE, and (c) MAP over the CONUS domain and across all 378 snapshots. (d)—(f)
As in (a)—(c), but over the SFE daily domains. In each panel, the mean #* of all unique pairs of members is given

above the matrix.

good statistical consistency, while HRRRE (CR = 0.46) and
MAP (CR = 0.37) are quite underdispersive. For the SFE daily
domains (Fig. 9b), the results are very similar. While these CR
values reveal much about the total ensemble spread aggre-
gated over all cases, they do not address whether MEV for a
single hourly snapshot is a good predictor of MSE for that same

snapshot, as is true of an ideal ensemble. To evaluate this, we
also compute * between MSE and MEV for the set of all
378 snapshots. Figure 10 presents scatterplots of MEV versus
MSE for all three systems and both verification domains. For
an ideal ensemble in which MEV = MSE, all points would lie
along the red line. However, even for highly underdispersive
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FIG. 6. Over the CONUS domain, the fractional gridpoint frequency of each ensemble member’s CREF > 40 dBZ probability field
differing in magnitude from its parent ensemble’s NMEP by at least (a) 0.5, (b) 0.6, and (c) 0.7. (d),(e),(f) Gridpoint frequencies for the
same respective thresholds are shown for the SFE daily domains. Note that the range of the abscissa changes between panels.

ensembles, a strong correlation between MEV and MSE (i.e.,
points lying along a line of lesser slope passing through the
origin) is still desirable. Over the CONUS, /* is quite high for
all three systems; however, * drops into the 0.5-0.65 range for
the SFE daily domains. This is a reflection of the relative
abundance of easy correct nulls over the CONUS domain, as
storms can be expected not to exist in most areas most of the
time. To focus more narrowly on grid points with meaningful
forecast challenges, Fig. 11 presents the same statistics when all
correct nulls (i.e., grid points where all ensemble members
have a zero probability and no storm is observed nearby in
reality) are removed. As expected, r* is reduced substantially in
this dataset; however, the reduction is much less severe for
HREFv2.1 than for HRRRE or MAP. In fact, 2 is 40%-70%
larger for HREFv2.1 than for the other two systems over both
domains. This implies that ensemble disagreement regarding
the presence of storms within HREFv2.1’s membership pre-
dicts MSE better than it does in HRRRE’s or MAP’s.

4. Verification of surrogate severe forecasts

As described in section 2, surrogate severe forecasts are
computed on an 80-km grid, making verification computation-
ally cheaper than CREF NMEPs. This affords us the opportu-
nity to verify surrogate severe forecasts over a range of UH
percentile thresholds and Gaussian o values, giving insight into
the dependence of CAM ensemble UH forecast skill on intensity
and smoothing length scale. Figure 12 presents ensemble sur-
rogate severe AUC (left) and FSS (right) as a function of these
parameters for HREFv2.1, HRRRE, and MAP. In each panel,
the ensemble’s maximum score within the percentile-o- param-
eter space is represented by a white square and annotated with
the AUC or FSS value. White circles, which are shaded by score
using the main color scale, represent the maximum scores
achieved by each ensemble member’s surrogate severe forecast
(e.g., on the HRRRE FSS panel, the maximum score achieved
by member HRRREO01’s forecasts will be plotted as a circle at
the o-percentile coordinate where that score occurs).
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FIG. 7. Attributes diagram for CREF NMEPs over the CONUS. Binned probabilities are
used; each bin is plotted as a white dot on the diagram, with a colored curve connecting all the
dots for each ensemble. The 90% CIs for the base rate in each bin are plotted as error bars,
also colored by ensemble. Below the attributes diagram, bars give the frequency of occur-
rence of probabilities within each bin (as a percentage of all grid points in the dataset). The
reliability component of the Brier score (BSggy) for each ensemble is given in the legend,

with its 90% CI in parentheses.

For AUC, maximum scores for each ensemble are attained
at relatively low intensities in the 75th-85th percentile range.
The performance ranking of the three ensembles by maximum
AUC score, with HREFv2.1 first and HRRRE last, matches
our CREF verification results for ensemble NMEPs. Interestingly,
the o value associated with the maximum AUC also varies
considerably between ensembles: MAP AUC values are highest
with relatively strong smoothing (o ~ 110km), whereas
HREFV2.1 achieves its highest AUC value with less smoothing
(o ~ 75km). For FSS, the ranking of the three ensembles re-
mains the same as for AUC, though the performance gap be-
tween HREFv2.1 and MAP is larger than for AUC. Higher
intensities in the 85th-90th percentile range, and weaker

smoothing, are required to maximize FSS than AUC. The
former is likely true because AUC tends to reward the over-
forecasts resulting from choosing a low UH threshold (e.g.,
Gallo et al. 2016), whereas FSS has a more balanced response
to the trade-off between POD and FAR. As with AUC,
HREFv2.1 maximizes FSS at a smaller o than does HRRRE
or MAP.

For both AUC and FSS, the individual member surrogate
severe forecasts (white circles) consistently require stronger
smoothing to optimize skill than the ensemble surrogate severe
forecasts (solid white squares). This result, combined with the
notable difference in score-maximizing o values between three
ensembles’ surrogate severe forecasts, motivates us to revisit
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FIG. 8. As in Fig. 7, but for the SFE daily domains.

the history of and best practices for spatially filtering CAM
NMEPs. When computing practically perfect truth fields,
Hitchens et al. (2013) chose a two-dimensional Gaussian ker-
nel that effectively used o = 120km, in part because this de-
gree of smoothing ‘“‘better represent|[ed] the outlooks issued by
the SPC” than other values they tested. Separately, studies
verifying surrogate severe forecasts from deterministic CAMs
(S11) and CAM ensembles (Sobash et al. 2016b,a; Loken et al.
2017; Sobash et al. 2019) have typically found skill (e.g., FSS
and reliability) maximized at o = 120 km; due to these findings,
in some cases, o = 120 km is simply chosen as the default value
(e.g., Sobash and Kain 2017). Some trade-offs entailed in
varying o are explored in S11: larger values tend to improve
reliability (to a point), but reduce sharpness and virtually
eliminate coverage of high probabilities. As cautioned by
Schwartz and Sobash (2017), defining the neighborhood and
smoothing length scales separately can complicate inter-
pretation and poses a risk of conflating scales. For example,
when FSS is computed across smoothing length scales using

smoothed continuous (instead of binary) truth fields (as in S11
and others), smoothing applied to the practically perfect fields
typically varies to match what is applied to the surrogate severe
forecasts. When such FSSs are found to be maximized at a large
o value, it does not necessarily imply that strong smoothing
produces the most skillful forecasts at the true neighborhood
length scale (which is almost always defined by a radius of
40km, in line with the SPC’s convective outlook definition).
Because our FSSs herein use a binary truth field, this caveat
does not apply, and our FSSs should directly reflect forecast
skill in answering the question: ““What is the probability of a
severe weather event within 40 km of this point?”” When we
assign our smoothing length scale o to exceed the neighbor-
hood size, then, it is simply a postprocessing technique that can
potentially improve skill in predicting neighborhood-scale
probabilities by accounting for uncertainty in storm placement.
Given similar skill of the resulting fields, using smaller o should
be preferred operationally in order to retain smaller-scale
spatial detail in the forecast. Thus, HREFv2.1 demonstrates
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FIG. 9. The consistency ratio of ensemble CREF > 40 dBZ NMEPs from each system as a
function of forecast lead time over the (a) CONUS and (b) SFE daily domains. The mean
consistency ratio over all lead times is given in the legend on each panel. The dashed line

denotes the ideal consistency ratio of unity.

added value over HRRRE and MAP not only in terms of
maximum skill scores, but also by achieving those scores with
smaller o (Fig. 12). Note that the individual members of all three
ensembles tend to maximize AUC and FSS in approximately
the same o range, implying that HREFv2.1 performs best at
smaller o primarily because of complementary information

from its diverse members; not because its member surrogate
severe forecasts individually need less smoothing.

Figure 13 presents AUCginca and FSSyginea for the three
ensembles (i.e., the score of the ensemble surrogate severe
forecasts minus the mean score of the member surrogate se-
vere forecasts). FSS,ained, in particular, highlights HREFv2.1’s
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FIG. 10. Scatterplots of mean ensemble variance (MEV) vs mean squared error (MSE) of CREF > 40 dBZ
NMEPs for the three ensemble systems over the CONUS and SFE daily domains. Each point on the scatterplot
represents the MEV and MSE for one of the 378 snapshots. In each panel, the coefficient of determination r? is
given in the label at top left. The red diagonal line denotes perfect correspondence between the MEV and MSE; a
snapshot with perfect statistical consistency will lie along this line.
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FIG. 11. Asin Fig. 10, but grid points with values of zero in both the forecast and observed fields (correct nulls) are
excluded from the calculation. For any single snapshot, the total squared error and total variance summed over the
domain remains as in Fig. 10 (since the excluded correct null points are zero in all fields), but the MEV and MSE
may change due to fewer grid points being considered in the average.
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FIG. 12. For the ensemble mean surrogate severe forecasts, the aggregate (left) AUC and (right) FSS for all
21 days in the verification dataset over the eastern 2/3 CONUS domain. Scores are displayed as a function of the
Gaussian smoothing o (abscissa) and the member UH climatology percentile (ordinate). On each panel, the o and
percentile where the maximum score is achieved for the ensemble mean surrogate severe forecasts is indicated by a
solid white square and annotated. Additionally, the o and percentile where each ensemble member’s surrogate
severe forecast achieves its maximum score is denoted as a white circle, with color fill inside the circle corresponding

to the member’s score.

augmented advantage over its members at o =< 80 km. It is clear
from Fig. 13 that when aggressive smoothing (¢ = 120km) is
used to produce ensemble surrogate severe forecasts, the re-
sulting field is only marginally more skillful than applying the
same smoother to a typical ensemble member’s binary field,
especially in the case of HRRRE and MAP. A corollary is that
the added computational expense of running a full CAM en-
semble for the purpose of producing skillful surrogate severe
forecasts generally yields diminishing returns as the choice of
o increases, since an optimized deterministic CAM could
provide a comparable product.

To assess the smoothing scale dependence of surrogate se-
vere forecast reliability, Fig. 14 presents attributes diagrams for
surrogate severe forecasts produced using three different
o values. At each o and for each ensemble, the UH percentile
that minimizes BSggp is selected to plot. At ¢ = 60km
(Fig. 14a), HREFv2.1 demonstrates better reliability than
HRRRE and particularly MAP, with the latter two showing
more overconfidence. Increasing o to 120 km reduces the
disparity between HREFv2.1 and HRRRE, although MAP

remains notably more overconfident (Fig. 14b). Finally, at o =
180 km (Fig. 14c), meaningful differences in reliability between
the three ensembles have been greatly minimized (indeed,
HREFV2.1 has the worst reliability, although none of the en-
sembles display obvious overconfidence). Given these results,
larger o may tend to mask underlying skill differences between
ensembles at the true neighborhood length scale.

Based on these analyses, we suggest verification and post-
processing of CAM ensemble rare-event NMEPs (including,
but not limited to, surrogate severe forecasts) that employ a
Gaussian smoother should, when possible, be tested across a
range of o values that extend well below the traditional sur-
rogate severe forecast default of o = 120 km. For example, our
surrogate severe forecast results suggest near-maximum skill
can now be extracted from a diverse CAM ensemble such as
HREFVv2.1 using a smaller smoothing length scale (o ~ 60 km).
Furthermore, during verification, ensemble NMEP skill at a
given o value should ideally be contextualized through com-
parison with individual member probabilities produced using
the same Gaussian parameter, as in Fig. 13. This assesses
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F1G. 13. Asin Fig. 12, but the plotted quantity is the difference between the score of the ensemble mean surrogate
severe forecasts and the mean score of the member surrogate severe forecasts (i.e., AUCgainea and FSSgyinea), and
dots for ensemble and member score maxima are omitted. Note that the range of the abscissa differs from Fig. 12 to
highlight the portion of the parameter space with nonnegligible AUCygineq and FSSyginca.

whether smoothing a single member’s binary field in the same
way as the ensemble mean could provide nearly equivalent
skill, in which case the ensemble is not adding substan-
tial value.

5. Summary and conclusions

In this study, we compared the ability of three CAM en-
semble systems to produce skillful probabilistic forecasts of
convective storms and severe weather hazards within the
context of the next-day forecast problem. The first ensemble,
HREFv2.1, is an ensemble of opportunity (EO) comprising
highly diverse deterministic CAMs processed together as an
ad hoc ensemble. The other two ensembles, HRRRE and
MAP, are formally designed ensemble prediction systems
(EPSs) with unified model configurations across their mem-
bers. Owing to their membership designs, HREFv2.1 samples
both model and IC uncertainty, whereas HRRRE and MAP
only sample IC uncertainty.

Verification of bias-corrected composite reflectivity (CREF)
exceeding 40 dBZ within an 80 km X 80 km neighborhood was
performed on hourly snapshots over the 21-day dataset in the
spring of 2018 for lead times of 13-30 h. Intended to evaluate

ensemble skill in the overall placement and coverage of con-
vective storms, this analysis revealed that HREFv2.1 produced
the most skillful forecasts, followed by MAP, and then
HRRRE. When forecasts from individual ensemble members
were verified, member skill between HREFv2.1 and MAP was
generally quite similar, with MAP members actually out-
performing HREFv2.1 members in some metrics. However,
HREFv2.1 NMEPs showed a substantially larger improvement
over its constituent member forecasts than did MAP NMEPs.
This suggests HREFv2.1 members are more effectively filling
out a realistic PDF, whereas MAP members are more dupli-
cative of one another (a weakness shared, to a somewhat lesser
extent, by HRRRE). This finding motivated further quantita-
tive evaluation of ensemble spread in the three systems.
Correlations between member NMEPs, along with the grid-
point frequency of member “outlier points,” were computed,
and both indicated substantially more ensemble spread exists
in HREFv2.1 than HRRRE and MAP. Attributes diagrams
also showed much better reliability for HREFv2.1, whereas
HRRRE and MAP exhibited overconfident probabilities. Spread—
skill metrics computed for NMEPs indicated very good sta-
tistical consistency for HREFv2.1; by contrast, HRRRE and
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FIG. 14. Attributes diagram for surrogate severe forecasts produced with a Gaussian filter using (a) o = 60 km,
(b) 0 =120 km, and (c) o = 180 km. At each o value and for each ensemble, the UH percentile, which minimizes the
reliability component of the Brier score (BSggy) is used to produce the surrogate severe forecasts; this percentile
and the resulting BSgg are reported in the legend for each panel.

MAP had approximately half of the spread needed for good
consistency. This inferior consistency was overwhelmingly due
to smaller spread in HRRRE and MAP, with their slightly
larger NMEP errors playing only a minor role.

To complement CREF verification, we also verified daily
surrogate severe forecasts with the goal of assessing ensem-
ble skill in predicting intense storms associated with severe

convective hazards (tornadoes, hail, and wind gusts). By ag-
gregating the surrogate severe forecasts over a 24-h period, this
verification was largely insensitive to timing errors. Additionally,
surrogate severe forecasts were produced and verified on a
relatively coarse 80-km grid, decreasing the computational cost
and allowing us to test a wide range of UH thresholds and
Gaussian o values. At their respective performance maxima
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within the UH-o parameter space, ensemble skill differences
between the three systems largely mirrored our CREF results:
HREFV2.1 performed best, followed by MAP, and then HRRRE.
Additionally, HREFv2.1 maximized AUC and FSS with a smaller
o than HRRRE or MAP, implying that its advantage over the two
other systems is especially pronounced when less smoothing is
applied to produce the surrogate severe forecasts. We computed
skill differences between the ensemble mean and member
surrogate severe forecasts throughout the parameter space
and found the ensembles (particularly HREFv2.1) offered their
greatest added value at small o, whereas strong smoothing (e.g.,
o > 120km) washed out much of the meaningful skill difference
between ensemble and deterministic surrogate severe forecasts.

These results have potential implications for postprocessing
and verifying neighborhood-based CAM ensemble products.
First, diverse ensembles such as HREFv2.1 with relatively
good spread characteristics may be capable of forecasting
convective storms with near-optimal skill at smaller spatial
scales than is assumed a priori when a Gaussian smoother is
applied using the traditional o = 120 km. To the extent this is
true, applying weaker smoothing to real-time NMEPs benefits
operational users by retaining more spatial detail from the
skillful model solutions. Additionally, when verifying CAM
ensemble NMEPs (including surrogate severe forecasts) over a
range of o values, the value that maximizes a skill score does
not necessarily highlight where the ensemble is adding the
most value over deterministic CAMs. As more aggressive
smoothing is applied to gridpoint NMEPs, they increasingly
verify similarly to the equivalently smoothed versions of their
underlying member binary fields. This is another reason that an
ensemble that achieves maximal skill using less smoothing
(HREFv2.1, in the present study) is preferable to one that at-
tains comparable skill only after applying more smoothing
(particularly true of MAP in the present study).

Given that HRRRE and MAP do not include sampling of
model uncertainty in any fashion, the superior spread and skill
of HREFV2.1 suggests the critical need to sample model errors
optimally in CAM ensemble design. Our results corroborate
the advantage of sampling model uncertainty previously shown
in the context of controlled CAM ensemble experiments
(Romine et al. 2014; Gasperoni et al. 2020); in the present
study, this was shown for ensembles implemented successfully
for real-time applications, and also for verification focused on
convective storms. Note that although HREFv2.1 is the only en-
semble herein to sample model uncertainty meaningfully, it also
typically contains more diverse ICs than HRRRE or MAP,
so further work is needed to isolate and quantify the specific
contribution of HREFv2.1’s model uncertainty sampling.®

8 Analysis of the member pair CREF NMEP correlations in
Fig. 5a reveals that a shared dynamical core or PBL scheme be-
tween two members is more strongly associated with increased
/? than shared parent model backgrounds or initialization times.
This suggests model uncertainty may contribute more spread
than IC uncertainty within HREFv2.1 at the lead times we
verified, but further analyses or experiments are needed to confirm
this rigorously.

FORECASTING VOLUME 35
Nonetheless, the superior spread of HREFv2.1 reported in
this study illustrates the compelling benefits of processing
CAM EOs with multidimensional member configuration
diversity. As we focused our verification on lead times of 12—
36 h, often described in convective forecasting as the ‘‘next-
day problem,” we cannot yet address whether accounting
for complex model uncertainty is similarly crucial at shorter
lead times. Also, vigorous development of CAM ensembles
has only accelerated in earnest over the most recent decade,
and operational implementations remain very limited. As
additional research is performed to bring stochastic physics
schemes to maturity, model uncertainty is likely to become
more adequately represented in future unified CAM ensem-
bles, potentially adding spread and improving their skill in
forecasting convective storms. Nonetheless, our results high-
light the impressive potential of dynamical core, physics, IC
analysis, and time-lagging diversity working in tandem to rep-
resent the highly nonlinear forecast uncertainties that modulate
convective initiation and evolution, suggesting they should be
given due consideration in future CAM ensemble design and
implementation decisions.
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TABLE Al. Unbiased CREF thresholds Tynpiasea (dBZ) corre-
sponding to the MRMS MRQCC 40-dBZ threshold for each model
configuration. Thresholds were computed for the CONUS domain
based on 378 hourly snapshots of CREF.

Configuration Tunbiasea (dBZ) for 40 dBZ
HRRRvV3 44.8
HRW ARW 43.0
HRW NSSL 434
HRW NMMB 47.7
NAM Nest 42.4
HRRRE 44.2
MAP 44.5

internally at NSSL. Local storm reports (LSRs) used for sur-
rogate severe verification were obtained from SPC’s public
logs (https://www.spc.noaa.gov/climo/online). Datasets stored
internally at NSSL may be shared upon request (pending the
consent of the original dataset creators, in the case of MRMS
and OU-MAP).

APPENDIX

CREF Bias Correction

Because we evaluate neighborhood probability forecasts for
CREF = 40 dBZ in this study, we are concerned with the
frequency bias for each ensemble member in exceeding that
threshold. As mentioned in section 2, we choose an approach
conceptually similar to “quantile mapping” (Hopson and
Webster 2010; Voisin et al. 2010). The dataset used for bias
correction is the same as the verification dataset. Our proce-
dure for computing bias-corrected CREF = 40 dBZ proba-
bilities is as follows:

1) Compute the gridpoint frequency of CREF = T'for T = [35,
36, 37, ..., 50] dBZ for each ensemble member over the
CONUS for all 378 hourly snapshots.

2) Compute the gridpoint frequency of CREF = 40 dBZ for
the MRMS MRQCC over the CONUS for all 378 hourly

snapshots.
3) For each ensemble member, compute the bias By, for T =
[35, 36, ..., 50] dBZ and O = 40 dBZ, where T is the

forecast threshold and O is the observed threshold.

4) For each ensemble member, choose an unbiased threshold
Tunbiasea DY linearly interpolating between the computed
Br o values (available at 1-dBZ increments) to estimate the
T value at which B74 = 1.

As an example, if Bz 4o = 1.05 and Byg 49 = 0.95 are com-
puted for a member, we estimate Typpiasea = 43.5 dBZ. Bias-
corrected NMEPs for ensembles are then computed with
respect to a member-dependent exceedance threshold of
Tunbiasea> Tather than a fixed 40-dBZ threshold. Note that our
procedure guarantees forecast exceedance probabilities will be
approximately unbiased with respect to MRQCC for any en-
semble at the grid scale, but does not strictly guarantee neigh-
borhood probability fields will be unbiased: it is possible for N
grid points exceeding Typpiaseq in a forecast to be systematically
more or less spatially clustered than N grid points exceeding
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F1G. Al. CREF gridpoint exceedance frequency biases for each
model configuration in the verification dataset. Bias is computed
over the entire 21-day dataset (378 hourly snapshots), and over the
CONUS domain, at 1-dBZ intervals for 35 = CREF = 50 dBZ, as
well as at 25 and 30 dBZ.

40 dBZ in the MRMS verification dataset, which in turn would
yield biased coverage of NMEP > 0 when the neighborhood
size is much larger than one grid point.

After computing the biases for each member of all three
ensembles, members are assigned into groups sharing identical
model configurations: MAP (N = 10), HRRRE (N = 9),
HRRR (N =2), HRW ARW (N = 2), HRW NMMB (N = 2),
HRW NSSL (N = 2), and NAM Nest (N = 2). For each of
these groups, the mean Typpiasea Of its members is used to
compute NMEPs. These values are displayed in Table Al. Our
theoretical goal in performing this correction is to ignore dis-
crepancies in how storms are depicted in different configura-
tions’ CREF fields; in particular, discrepancies owing strictly to
idiosyncrasies of the microphysics scheme, numerical diffu-
sion, etc. Put another wayj, if a particular storm with a particular
structure and intensity is “correctly” predicted in all of the
model configurations, we hope to treat the simulated mani-
festation of that storm the same in each configuration during
verification. In practice, however, it is possible that the con-
figurations exhibit different biases in the actual coverage of
convective storms, which could lead us to assign more ag-
gressive configurations a Tynpiasea cOrresponding to more in-
tense storms than less aggressive configurations.

In the course of performing the bias correction, gridpoint
frequency biases were computed for numerous CREF thresh-
olds for each model configuration over the CONUS. These
biases are presented in Fig. Al. Regarding the aforementioned
possibility of discrepancies in real storm coverage unduly
influencing our thresholds: it is encouraging that configurations
sharing a common microphysics parameterization scheme
generally exhibit similar bias curves (e.g., the MAP, HRRRE,
and HRRR, all using Thompson microphysics; or the HRW
ARW and HRW NSSL, both using WSM6 microphysics). At
the 40-dBZ exceedance threshold, frequency biases range from
1.5 to 3.9 across the configurations.
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