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ABSTRACT

A simple analysis of the position error inherent in double-theodolite pibal systems is presented. The
quality of data collected by double theodolites is very sensitive to the geometric design of the system,
and care must be taken in the interpretation of results.

1. Introduction

It is all too common for those who use real data
in scientific calculations to fail to consider the in-
herent limitations of the data. This practice arises,
in part, through the ready availability of digital
computers. However, even some of the problems

encountered by Richardson (1922) in hand calcula-
tions resulted from the finite reliability of the input
data. Thus, this practice has a long history and most,
if not all, of us commit this error at times in our
haste to see results.

Neoprene balloons are the primary vehicle for non-
surface meteorological wind data collection. The bal-
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loon ascent rate impacts not only wind data derived
from pilot balloons, but also in-thunderstorm vertical
velocity estimates (e.g., Davies-Jones and Henderson,
1975). Recently a controversy over the ascent rate
of such balloons has arisen in the literature (Boatman,
1974, 1975; Nelson, 1975; Mansell, 1976; Murray and
Auer, 1976).

These papers are based upon double-theodolite
measurements of balloon position. From these mea-
surements, estimates of the three-dimensional balloon
velocity have been obtained. The controversy centers
on the apparent dependence of the balloon-derived
vertical velocity on the atmosphere’s thermal strati-
fication. We will not.attempt to resolve this contro-
versy here, but rather point out the limitations of
double-theodolite systems as dictated by geometric
considerations.

2. A brief history of double-theodolite pilot balloon
measurements

. Before proceeding to a simple error analysis for
double-theodolite measurements, it is instructive to
review some of the substantial number of papers on
the subject of errors in pilot balloon measurement
of winds.

Among the first estimates of the vector error in
winds derived from double-theodolite measurements
are those of Arnold (1948). When tracking the same
balloon with “two distinct and separate double the-
odolite observitions,” the average wind speeds ob-
tained by the two systems differed by 0.5 m s and
the computed height of the balloon varied by an
average of 10 m. Since the baseline of his theodolite
system is not known, a geometric interpretation of
these results cannot be made. In discussing double-
theodolite systems, the War Department (1945)
admonished observers to use a baseline length of
about 1 mi, oriented as nearly perpendicular to the
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mean wind as possible. Presumably this is to mini-
mize errors in the calculations. Middleton and Spilhaus
(1953) repeat this admonition in a detailed discussion
of the problem’s geometry. Also, Hansen and Taft
(1959) point out the cumulative nature of position
errors, suggesting that the errors are an increasing
function of height.

These papers are based on the so-called “three-
angle” method. Each of the two theodolites gives
readings of an elevation and an azimuth angle. How-
ever, the balloon’s position in space can be specified
by using only three angles. Theoretically, the fourth
angle is functionally dependent upon the other three.
If errors are present in the angular readings, the
three-angle method can give two different balloon
elevations, depending on which angles are used in
the computations. Also, when the balloon crosses the
baseline, the balloon position becomes indeterminate,
and an independent two-angle formula must be used.

In an effort to overcome these problems, Thyer
(1962) devised a “four-angle” method of evaluating
double-theodolite data. This method is based on the
interdependence of the four angular measurements.
The direction cosines of the rays from each theodolite
to the balloon are computed. The length and orienta-
tion of the line perpendicular to both rays are then
calculated and the “most probable” position of the
balloon on this ‘short line” is determined. Thyer
shows that the length of the short line depends on
the length of the two rays and the accuracy of the
angular measurements.

3. Geometric considerations

Consider the double-theodolite configuration shown
in Fig. 1. Points T and T, are the theodolite locations
(assumed, for simplicity only, to have the same
elevation), separated by a baseline of length 6. The
rays from theodolites T; and T, to the balloon (located

¥i16. 1. Schematic of double-theodolite geometry. Notation is explained in text.
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at B) have lengths R; and R,, respectively. The
azimuth and elevation angles measured by theodo-
lite T; are o and e, while those measured by T,
are v and 7.

The point designated By is the projection of the
balloon position onto the horizontal plane. The hori-
zontal displacement of the balloon from its release
point (assumed, again only for clarity, to be at the
middle of the baseline) is L and the height of the
balloon is 4. When the three-angle method is used,
the coordinates of By are computed first. The hori-
zontal triangle T1T:Bu, has sides 4, b, G and from the
law of sines it is known that

sine siny sing sin(a+tvy) M
4 G b b

Thus, the theodolite azimuth angles determine the
length of side G as

b siny
sin (a—i—'y)'

Analytic geometry dictates that the (x,y) coordi-
nates of By from an origin located at T are (G cosa,
G sina). If errors da and &y exist in the angular mea-
surements, the coordinates of the projection point will
be in error by

Glayy)=

2

$x=2x{[—tana— cot (a+7) Ja
+[coty—cot(a+v) v}, 3)

8y=9{[ cota— cot (a+7) Joa
+[coty—cot(a+v)Iov}. (4

These errors can be caused either by experimental
problems or even by the limited precision of the
theodolite system. Further interpretation is greatly
simplified if it is assumed that da=3&y. While, in
general, these azimuth errors are independent, if they
are considered to be caused only by precision prob-
lems, this is not an unreasonable restriction. When
this is the case, the positioning of the horizontal
projection of the balloon will be in error by

0L = (8x>4-0y%)}
b siny

=sin (a—_l-;)—{ 14[coty~2 cot(a+1) ]2} ¥a. (5)

To illustrate this effect, Eq. (5) has been solved
numerically for §L/b=109,. The results for §a=0.1°
and da=1° are shown in Fig. 2. Horizontal projec-
tion points lying outside the infinity sign have a
displacement error greater than 109, of the baseline
length. That means for a 1 km baseline, with azimuth
readings accurate to the nearest tenth of a degree,
it is impossible to determine the horizontally projected
position of a balloon within 100 m if the balloon is
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Fic. 2. Regions where displacement error is less than 109,
of the baseline length. Ty and T, denote positions of the theodo-

lites. Outer figure is for da=06y=0.1°; inner figure is for
da=5y=1.0°

over 54 km from the baseline. For other positions
of the balloon, displacement errors reach the 109,
baseline level more quickly.

If the positioning errors are random, a crude esti-
mate of the accuracy of the speed computed from
the measurements can be obtained. If two measure-
ments are made with sampling error §; and &, the
difference between the measurements has a sampling
error of A= (8;2448,2)% For a balloon released from
the midpoint of a 1 km baseline under the influence
of a constant 10 m s wind and position measured
with theodolites having an accuracy of 0.1°, the posi-
tion uncertainty after 3 min is 12 m and after 4 min
21 m. Thus the wind speed calculated at 3% min has
an expected inaccuracy up to 0.4 m s~'. However,
by 8% min, the position uncertainty has risen to 92 m,
and by 9 min it is 114 m, yielding a speed uncertainty
after 9 min of 2.4 m s~

As the accuracy of the measurements degenerates,
the domain of acceptable readings rapidly diminishes.
Readings only 1° in error force the 1097 baseline
accuracy limit to move within 1.7 baselines for the
best case.

As long as a does not equal zero, the ‘“three-angle”
method allows the height of the balloon to be cal-
culated by either

b siny
h=G tane= tane (6)
sin (a+7)
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Fic. 3. Height and height error relative to baseline length as
a function of elevation angle for the “best” case when the bal-
loon is at (a) 2.5 baseline lengths and (b) 5.0 baseline lengths.
Dotted curve is for height and is scaled with right-hand ordinate.
Dash-dotted curve is for a positive correlation of the azimuth
and elevation angle measurement error (§a=0.1°=3¢) and solid
curve for a negative correlation (fa=0.1°=-—3¢); both are
scaled with left-hand ordinate. :

or
b sina

h=A4 tany= tany. (N

sin{a+7)

In full generality, the height error (k) obtained
from (6) is

8h=h{[coty— cot{a+y) oy
—cot(a4y)da+sece cscede}.  (8)

The result obtained from (7) is similar except the a’s
and v’s are interchanged and 7 is used instead of e.
Thus, significant height errors can arise from inexact
readings of either the azimuth or the elevation angles.
Since all of the trigonometric functions in (8) are
unbounded, the height errors in actual conditions can
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attain sufficient magnitude to make the computation
of vertical velocity nearly meaningless.

A qualitative indication of the height error can be
most easily obtained by once again considering the
best case, i.e., the balloon is positioned over the
perpendicular bisector of the baseline. In this situation

2a+4=180°, )
(10)

If the two azimuth errors are considered to be equal,
the error in length G, the horizontal projection of
ray Ry, can be expressed as

G=L csca=4b seca.

3G = 1b seca tana da, (11)
Differentiation of (6) then gives the height error as
8h=1b seca(tane tana da+sec?e b¢). (12)

For purposes of illustration, plots of 84/ as cal-
culated via (12) are shown in Fig. 3 for two hori-
zontal projection points (L/6=2.5 and L/b=5.0). The
further simplification is made that a=0.1°=3d¢, in
which case the azimuth and elevation angle measure-
ments are positively correlated and of the same pre-
cision. These restrictive assumptions are not meant
to suggest that they are applicable for a particular
set of measurements, but are intended to allow us to
determine a representative value for 84/b. Results
support the intuitive concept that the height error
for a given horizontal distance along the bisector
increases with elevation angle. Conversely, for a given
elevation angle, the error increases with distance from
the baseline (i.€., with increasing a).

Also shown are the height errors for a negative
correlation of azimuth and elevation angle measure-

. ment error (fa=0.1°=—4&¢). As may be seen, the

height error in this case is somewhat smaller in mag-
nitude, becoming negative at large elevation angles.
The correlation between da and e is not known
a priori to be either positive or negative for a given
set of measurements; nor is it obvious that da and de
need to have the same magnitude. The intrinsic
complexity of the geometry precludes an easy inter-
pretation of this result, but one might suspect that
the difference between positive and negative correla-
tion curves is qualitatively related to the expected
range of possible height errors under the given angular
precision of the measurements. This range is com-
patible with that given by Arnold (1948).

An analysis of Thyer’s four-angle method is con-
siderably more complicated. However, for the ideal
case considered above, Thyer’s technique collapses to
the three-angle method. Therefore, the height errors
due to either computing technique will be similar for
the best case. It is worth noting that while the con-
cept behind Thyer’s formula for the maximum length
of the short line is correct, it does not give an adequate
estimate of the error. This is because the measure-
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ment of the lengths of rays R; and R, has an error
which is dependent on the accuracy of the angular
measurements. The maximum length of the short
line is

5=0.05 (Ry+0R;+Ro+5Ry) 57.2958.  (13)

For the ideal case, it can easily be seen that
Ry=Ri=1%b sece seca=G sece=R,

and the error in ray length, as a result of angle mea-
surement error, is then

6R=3b[ sece seca tana da+seca sece tane de |
= R[ tana do+tane de .

The importance of using (13) instead of Thyer's
formula for error estimation can be seen by examining
Nelson’s (1973) results. His computed short-line lengths
exceeded the maximum error calculated via Thyer’s
formula by an order of magnitude. This difference can
be accounted for by including the 6R’s, as in (13).

4. Implications

While the examples considered in depth are ex-
tremely restrictive, a basic problem in determining
balloon position via double-theodolite measurements
has been illustrated. Simply having dual-theodolite
systems is not a panacea for obtaining high-quality
data. Since the accuracy of the data is intimately
and nonlinearly related to both baseline length and
the range of the balloon, the purpose of the experi-
ment must be known before the measurement system
is deployed. That is, the absolute error (84 or 4L)
is proportional to b, so that for mathematically similar
triangles (the relative errors are equal), the absolute
error is smaller when & is smaller. However, if the
balloon has traveled a significant distance from the
baseline, the relative error is substantially greater with
a short baseline. If results are to emphasize the early
parts of the balloon run, when the balloon is close
to the baseline, it might be advantageous to use a
short baseline. On the other hand, if a short baseline
results in the balloon being several baseline lengths
away at the time of interest, it is likely that a longer
baseline is called for.

Even though we have specifically addressed the
dual-theodolite problem, the geometry is applicable
to any data collection system which is based upon
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triangulation. Stereo-photogrammetry (e.g., Kassander
and Sims, 1957) and dual-Doppler radar systems
(e.g., Ray and Wagner, 1976) are two other such
systems commonly used in meteorology. What we
wish to stress is that caution must be taken when
collecting and interpreting data.
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