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ABSTRACT: A sample of damage-surveyed tornadoes in the contiguousUnited States (2009–17), containing specific wind

speed estimates from damage indicators (DIs) within the Damage Assessment Toolkit dataset, were linked to radar-

observed circulations using the nearest WSR-88D data in Part I of this work. The maximumwind speed associated with the

highest-rated DI for each radar scan, corresponding 0.58 tilt angle rotational velocity Vrot, significant tornado parameter

(STP), and National Weather Service (NWS) convective impact-based warning (IBW) type, are analyzed herein for the

sample of cases in Part I and an independent case sample from parts of 2019–20. As Vrot and STP both increase, peak

DI-estimated wind speeds and IBWwarning type also tend to increase. Different combinations ofVrot, STP, and population

density—related to ranges of peak DI wind speed—exhibited a strong ability to discriminate across the tornado damage

intensity spectrum. Furthermore, longer duration of high Vrot (i.e.,$70 kt) in significant tornado environments (i.e., STP$ 6)

corresponds to increasing chances that DIs will reveal the occurrence of an intense tornado (i.e., EF31). These findings were

corroborated via the independent sample fromparts of 2019–20, and can be applied in a real-time operational setting to assist in

determining a potential range of wind speeds. This work provides evidence-based support for creating an objective and

consistent, real-time framework for assessing and differentiating tornadoes across the tornado intensity spectrum.

KEYWORDS: Supercells; Tornadoes; Storm environments; Radars/Radar observations; Forecasting techniques;

Operational forecasting

1. Introduction

Blair and Leighton (2014) noted the need for robust, scien-

tific guidance for real-time tornado intensity estimates in their

assessment of event confirmation in NWS warnings and

statements across the central CONUS from 2007–11. A few

NWS local forecast offices began issuing experimental impact-

based warnings (IBW; Wagenmaker et al. 2014) in 2012 for

severe thunderstorms and tornadoes. The practice of issuing

IBWs underwent increasing adoption in phases by additional

NWS local forecast offices and became a nationwide practice in

2016. The IBWs are intended to convey the potential impact to

life and property within the disseminated warning text, based

on the forecaster’s subjective estimate of the threat posed by a

tornado. Forecasts of tornado intensity remain a challenge

within the context of tornado warning time scales. Forecast

lead time with skill relies on interpretation of full volumetric

WSR-88D data (e.g., Gibbs and Bowers 2019), as well as

temporal trends in combinations of rotational characteristics

and near-storm environment (Baerg et al. 2020). Forecasts of

weak tornadoes [enhanced Fujita (EF) scale (EF0–EF1)] on

the time scale of tornado warnings remain difficult. Work to

date has focused primarily on discrimination between weak

and strong tornadoes (e.g., Kingfield and LaDue 2015), lead

time to the onset of EF21 tornado damage (Gibbs and Bowers

2019), or the potential for stronger tornadoes with wider

mesocyclones (Sessa and Trapp 2020). Variations in tornado

intensity within tornado warning time scales (beyond the

EF21 discrimination) have not received as much attention.

Recent studies [e.g., Thompson et al. 2012, 2017, hereafter

T17; Smith et al. 2015; Cohen et al. 2018] provided empirical

evidence of variations in tornado damage-based intensity as a

function of near-storm environmental conditions and storm-

scale rotation strength. More specifically, the significant tor-

nado parameter (STP;1 Thompson et al. 2012) and manually

determined 0.58 tilt angle maximum rotational velocity Vrot

from the nearest single-site WSR-88D, served as single-

variable proxies for the near-storm environmental conditions,

and storm-scale rotation strength, respectively. As discussed in

Smith et al. (2020, hereafter Part I) of this work, tornadoes are

not resolved explicitly in WSR-88D data. Per high-resolution

mobile Doppler radar observations, mesocyclone signatures

resolvable inWSR-88D data do not necessarily vary in tandem

with tornado intensity (French et al. 2013, 2014; Marquis et al.

2016; Bluestein et al. 2019), and rapid fluctuations in tornado

intensity can occur on spatiotemporal scales unresolvable in

WSR-88D data. Some of the highest ground-relative wind

speeds in well-sampled tornadoes are produced by embedded

subvortices, which can vary on the order of tens of meters and

tens of seconds (e.g., French et al. 2013; Wakimoto et al. 2016;

Bluestein et al. 2018, 2019). Ideally, tornado damage swaths
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could be estimated in real time via mobile Doppler radar data,

though such data are not available in real time or for the ma-

jority of tornadoes across the CONUS.

After the EF scale (WSEC 2006) was implemented to assign

wind-engineered intensity estimates to tornado damage in

2007, the Damage Assessment Toolkit (DAT; Camp et al.

2010) was created to digitally archive tornado damage met-

adata. The National Weather Service (NWS) began the DAT-

based data collection effort in 2007 from a few select tornado

events. A larger fraction of tornadoes were digitally archived in

the DAT as this practice became increasingly adopted by more

NWS local forecast offices in recent years.2 The EF scale

contains 28 damage indicators (DIs), each associated with

degrees of damage (DoD) indicating a range of possible wind

speeds (WSEC 2006).

Smith et al. (2020, hereafter Part I) examined Vrot for indi-

vidual DIs accompanying nearly 3400 tornadoes from 2009 to

2017 across the contiguous United States. Part I provided di-

rect evidence that peak tornado intensity can be estimated on a

scan-by-scan basis with WSR-88D data, albeit as a ‘‘worst-case

scenario,’’ since predicted speeds will frequently exceed the

weaker DIs that are ubiquitous within any tornado damage

path, especially within portions of a tornado path affecting

rural areas with few or no DIs. This work addresses a gap in

quantitative information within NWS tornado warning time

scales by developing diagnostic applications of the findings of

Part I. A tornado damage–estimation matrix—based on com-

binations of Vrot, STP, and population density—provides tor-

nadic wind speed ranges and allows for a real-time, diagnostic

assessment of potential tornado damage intensity and accom-

panying peak DI wind speeds. The relationship between tor-

nado damage intensity information and NWS IBW tornado

warnings is discussed, along with an objective approach for

applying these findings to better discriminate potential tornado

damage intensity in a real-time operational setting, for ongoing

tornadoes.

2. Data and methods

a. Tornado data and attribute pairing

The findings of Part I serve as the basis for the potential

tornado warning applications described herein. Various dis-

tributions ofVrot as a function ofDIs were considered by Part I,

and they ultimately recommended using Vrot from individual

0.58 tilt angleWSR-88D scans to estimate peak DI wind speeds

with each scan update for ongoing tornadoes. Part I made no

attempt to estimate tornado damage path widths or integrated

damage areas, which would be necessary to quantify potential

tornado impacts. The Part I approach resulted in 7513 0.58 tilt
angle scans with accompanying values of Vrot, STP, and a peak

DI-based wind speed. The type of warning in effect, including

no warning, was documented at the time of each 0.58 DI scan

FIG. 1. Probability of impact-based warning (IBW) type vs binned wind speeds of peak damage indicators (mph;

x coordinate). No warning, severe, and tornado (base-tier tornado, considerable, catastrophic) sum to 100%

probability. The 2009–17 data (solid line) vs 2019–20 independent data (dotted line; 1 mph 5 0.447m s21).

2 DAT became mandated by NWS field offices in 2018, just after

the 2009–17 study period.
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for each tornado. Prior to the IBW era, four categories (i.e., no

warning, severe thunderstorm warning, tornado warning, and

tornado emergency) were assigned. Since IBW was adopted in

phases beginning in April 2012, this analysis will only include

warnings from IBW-issuing NWS forecast offices during the

IBW era through 2017, which reduces the number of 0.58 DI

scans analyzed from 7513 to 5586.

An independent test sample (13 024 initial DIs asso-

ciated with 2263 0.58 radar scans during 637 tornadoes)

was developed using DAT-archived tornado events from

January–May 2019, along with 10 additional tornadoes

from late 2019 and April 2020. In addition to NWS warning

type in effect at the time of each 0.58 scan, gridded pop-

ulation density data (;0.5-km resolution) from the 2010

U.S. census were associated with the centroid of each in-

dividual Vrot, which allows some quantification of the in-

fluence of population on tornado intensity estimates. Two

mutually exclusive sets of tornadoes grouped by population

density (i.e., ,20 people km22 and $20 people km22) were

analyzed (see section 3e).

b. Kernel density estimation

Following the methodology of Anderson-Frey et al. (2016,

2018), kernel density estimation (KDE; based on a Gaussian

kernel) was used to compare the two-dimensional parameter

space of Vrot and peak DI wind speed by warning type.

Statistical significance testing examined the difference be-

tween mean values of a given variable (i.e., differences in peak

DI wind speed and Vrot between the different warning types

during the IBW era). Significance at the a 5 0.05 level is

evaluated using a 10 000-sample bootstrap.

c. Duration

The duration of the 0.58 scans meeting particular criteria was

calculated as the time difference between the first scan where

criteria were met and the next scan where criteria were no

longer met. For example, using the criteria of Vrot $ 70 kt and

STP80km $ 6, if the time of the first scan meeting the criteria

was 0000 UTC, the following scans continued to meet the cri-

teria from 0002 to 0006UTC, and criteria were no longermet at

0008 UTC, the duration meeting criteria was calculated as

0008 UTC minus 0000 UTC, or 8min. The minimum duration

for a single scan meeting criteria would be the time between

the scan updates (2min in the case of the previous example).

Duration totals were summed through the entire lifetimes of

the tornadoes, with some tornadoes having multiple periods

meeting the same criteria.

3. Results

a. Impact-based warnings

Warning type and Vrot data during the IBW era were ex-

amined for all surveyed tornadoes within the DAT (Fig. 1).

Tornadoes were accompanied by tornado warnings (3955 or

71%) for the majority of individual 0.58 DI scans compared to

severe thunderstorm (912 or 16%) and no warning (719 or

13%). Tornado warnings also became increasingly probable as

peak DI wind speed increased. As the peak DI wind speed

FIG. 2. Scatterplot of 0.58DI scans by warning type (nowarning, cyan; severe thunderstorm, blue; tornado, red) of

peak DI wind speed (mph; x coordinate) vs Vrot (kt; y coordinate) during the IBW era. The large circles represent

the median values of DI wind speed and Vrot for each warning type (1 mph 5 0.447m s21, 1 kt 5 0.514m s21).
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increased fromweak tornado [i.e., 80–94mph (36–42m s21)] to

strong tornado [i.e., 125–139mph (56–62m s21)], the percentage

of tornado warnings valid at the time of each of the 0.58 scans
increased from 64%–94%. IBW tornado warnings include a

base-tier warning, a considerablewarning tag, and a catastrophic

warning tag.Comparing five potential options for awarning (i.e.,

no warning, severe thunderstorm, base-tier tornado, consider-

able tornado, and catastrophic tornado) in Fig. 1, all three tor-

nado warning types exhibited increasing probabilities as binned

peak DI-estimated wind speeds increased from 80–94 mph

(36–42m s21) to 125–139 mph (56–62m s21). However, the

most common warning type was the base-tier tornado warning,

regardless of peak DI-estimated tornado wind speeds, as dis-

cussed in Gibbs and Bowers (2019).

Conversely, as peak DI-estimated wind speeds increased,

the probability of no warning and severe thunderstorm warn-

ing decreased. The probability for a base-tier tornado warning

also decreased for the 140–154 mph (63–69m s21) and 155–

169mph (69–76m s21) wind speed bins, while considerable and

catastrophic warning tag probabilities increased. The sample

size is relatively small for 0.58 scans associatedwithDI-estimated

wind speeds $ 170 mph (76m s21).

The peak DI wind speeds, based on 0.58 DI scans for the

independent sample of tornadoes from parts of 2019–20, are

also plotted in Fig. 1. During the more recent period of the

independent sample, it appears that discrimination of tornado

intensity within IBW has improved by some measures. For

example, the probabilities of a base-tier tornado warning have

increased by 10%–15% for the weakest peak DI wind speeds

(50–94 mph), and decreased by roughly the same percentages

in the 125–154-mph range (upper EF2–middle EF3 damage),

where sample sizes are still reasonably large. An increase in

catastrophic tags for peak DI wind speeds of 125–169 mph

(middle EF2–lower EF4 damage) is at the expense of base-tier

tornado warnings. On the other hand, the probabilities of

considerable and catastrophic tags have roughly doubled for

peak DI wind speeds of 110–124 mph (EF1–lower EF2). The

source(s) of the changes since 2017 are not known with high

confidence, though it is reasonable to assume that NWS

training efforts and increased forecaster experience have both

contributed positively to warning performance since 2017 (e.g.,

the training guidelines advanced by Gibbs 2016).

Many of the no-warning 0.58 DI scans were skewed toward

weak peak DI wind speeds [i.e., #110 mph (49m s21)] and

weak Vrot [i.e., #35 kt (18m s21); Fig. 2]. In contrast, tornado

warning 0.58 DI scans were distributed across a much larger

range of peak DI wind speed and Vrot. NWS warning types

were also compared using median (50th percentile) values of

peak DI-estimated wind speed and Vrot for each warning type.

Tornado warnings were characterized by higher median values

of peak DI-estimated wind speed [95 mph (42m s21)] and Vrot

[39 kt (20m s21)] than severe thunderstorm and no-warning

0.58 DI scans. Two-dimensional comparisons of warning types

were achieved through KDE (which functions similarly to a

two-dimensional histogram, without the sharp categorical

breaks; Fig. 3). The inner density contour (i.e., 10th percentile)

of the tornado and severe thunderstorm warnings overlap

some with one another, but not with the tornadoes that were

unwarned. Otherwise, the most pronounced difference stem-

ming from Fig. 3 is the extension of the tornado warnings into

FIG. 3. Kernel density estimation is used to smooth the data for the respective warning type by peak DI

wind speed (mph; x coordinate) and Vrot (kt; y coordinate). Contours are centered on the point of highest density

and contain 10%, 50%, and 90% of the data. Events are contoured by no warning (cyan), severe thunderstorm

warning (blue), and tornado warning (red); inner contours are slightly thicker than outer contours (1 mph 5
0.447m s21, 1 kt 5 0.514m s21).
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the higher Vrot and peak DI wind speed parameter space at the

90th percentile. Among no warning, severe thunderstorm, and

tornado warnings, all differences in the means for peak

DI-estimated wind speed and Vrot are statistically significant at

a 5 0.05. The difference of means was largest between no

warning and tornado warning, which represented the most

practical value (Fig. 4) in discrimination among the three

warning types. Discrimination between nontornadic and weakly

tornadic storms will remain challenging, as illustrated by the

tornado events/peak DI scans with no warning or severe thun-

derstorm warnings shown in Figs. 3 and 4, and the relatively low

tornado probabilities for similarly weak Vrot [,30 kt (15m s21);

T17). Tornado warnings with appropriate lead time require

more complete assessments of storm structure/evolution and

FIG. 4. Histograms comparing no-warning vs tornado warning for each 0.58 tilt angleWSR-88D scan during each

tornado. The yellow lines are the actual difference between mean values, and the red lines demarcate the 5%

confidence interval of the bootstrap sample built by randomly redistributing the data between the two warning

types and then calculating the mean. The blue line at 0 equates to the hypothesis testing [difference of means is zero

(i.e., that the two categories are the same)]. (a) Peak DI wind speed (mph; x coordinate) and (b) Vrot (kt; x co-

ordinate; 1 mph 5 0.447m s21, 1 kt 5 0.514m s21).

FIG. 5. As in Fig. 2, but for base-tier tornado warning (green), considerable warning tag (orange), and catastrophic

tornado warning tag (purple; 1 mph 5 0.447m s21, 1 kt 5 0.514m s21).
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near-storm environment (e.g., Gibbs and Bowers 2019; Sessa

and Trapp 2020; Baerg et al. 2020) than snap shots of Vrot alone.

The IBW base-tier tornado warnings displayed a very large

range of both peak DI-estimated wind speed [51–191 mph

(23–85 m s21)] and Vrot [5–103 kt (3–53 m s21); Fig. 5].

Catastrophic-tag warnings were more common with $120-mph

(54m s21) peak DI-estimated wind speeds and$70-kt (36m s21)

Vrot, and were less common with #100-mph (45ms21) peak DI-

estimated wind speeds and #50-kt (26ms21) Vrot. The median

values of the tornado warning types increase almost linearly from

base-tier [i.e., 95-mph (42m s21) peak DI-estimated wind speed,

38-kt (20m s21) Vrot], to considerable-tag [107-mph (48m s21)

peak DI-estimated wind speed, 51-kt (26ms21) Vrot], and finally

to catastrophic-tag [120-mph (54ms21) peak DI wind speed,

62-kt (32ms21)Vrot]. The inner 10%density contours ofKDE for

base-tier and catastrophic warnings are distinctly offset from each

other and minimal overlap exists for the 50% density contour

between base-tier and catastrophic-tag tornado warnings (Fig. 6).

According to KDE analysis, base-tier warnings are most densely

concentrated with the weaker peak DI-estimated wind speeds

and Vrot, considerable-tag warnings possess stronger peak DI-

estimated wind speeds and Vrot, and catastrophic-tag warnings

display the highest values of peak DI-estimated wind speeds and

Vrot. The base-tier, considerable-tag, and catastrophic-tag warn-

ings peak DI-estimated wind speed and Vrot were compared by

warning type and all of their difference of means were statistically

significant at a 5 0.05. As anticipated, the base-tier versus

catastrophic-tag warnings yielded the largest difference of means

(Fig. 7) for peakDI-estimatedwind speed [27mph (11ms21)] and

Vrot [22 kt (11ms21)]. These results suggest that IBW demon-

strates some skill in discriminating between the weaker and

stronger portions of tornado paths, based on both peak DI wind

speeds and Vrot.

b. Convective mode

Further tornado damage intensity discrimination appears

possible when accounting for convective mode—the median

values for peak DI-estimated wind speed and Vrot increased

from disorganized, to QLCS, to supercell. The disorganized

storm type (Smith et al. 2012) includes discrete cells and clusters

responsible for landspouts (Brady and Szoke 1989), waterspouts

from land/sea-breeze interactions, weak convection associated

with tropical cyclones (Edwards et al. 2012), and so-called cold-

air funnels. Tornadoes with disorganized storms almost exclu-

sively result in weak damage (EF0–1) with correspondingly

weak Vrot , 40kt (21m s21; Fig. 8), though our sample of tor-

nadoes (and accompanying DIs from damage surveys) with

disorganized storms is small compared to supercells andQLCSs.

The median values from disorganized storms were substantially

weaker for peak DI-estimated wind speed [85 mph (38m s21)]

and Vrot [20 kt (10m s21)] than the median values from all IBW

warning types, as well as the QLCS and supercell3 modes (see

Fig. 8). QLCS tornadoes clustered in the Vrot range of 20–50 kt

(10–25m s21) with peak DI wind speeds generally #110 mph

(49m s21). Supercells were the dominantmode withVrot. 50kt

(25m s21) and peak DI-estimated wind speed . 110 mph

(49m s21), and were exclusive to Vrot $ 70kt and violent

(EF41) tornado damage [i.e., $166 mph (74m s21)].

c. Quantifying potential tornado damage intensity

Substantial discrimination of peak DI wind speed (Fig. 9)

was achieved by exclusive grouping of Vrot/STP80km ranges

FIG. 6. As in Fig. 3, but for base-tier tornado warning (green), considerable warning tag (orange), and catastrophic

tornado warning tag (purple; 1 mph 5 0.447m s21, 1 kt 5 0.514m s21).

3 Supercell nomenclature used interchangeably with Smith et al.’s

(2012) right-moving supercell (RM) definition.
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(Figs. 9–11 ) in order to differentiate peak DI-estimated wind

speeds across the tornado intensity spectrum, given the range

of peak DI-estimated wind speeds possible for particular

values of Vrot (e.g., Figs. 2, 5, and 8). Combining the two

weakest-magnitude bins of Vrot and STP80km (i.e., the green

columns on the left side of Fig. 9) resulted in peak DI

wind speeds # 110 mph (49m s21) for 95% of the individual

0.58 DI scans (Fig. 10). Because the distributions of peak

DI wind speeds for the aforementioned two weakest bins of

Vrot/STP80km were similar (Fig. 9), these cases are grouped

in a potential tornado damage intensity class referred to as

level 1 (Figs. 10 and 11). Supercells with weak low-level me-

socyclones, QLCSs with weak mesovortices, or disorganized

storm modes are common in level 1. Stronger combinations of

Vrot and STP80km resulted in progressively higher median

values of peak DI wind speeds in the level 2–3 range (Fig. 10).

Last, the rare combination of Vrot $ 70 kt (36m s21) and

STP80km $ 6, yielded a large fraction (44%) of the violent

tornado equivalent (EF4–5) 0.58 DI scans in levels 4–5.

Anecdotal evidence prompted the consideration of population

density, which corresponds to DI availability. It is hypothesized

that DI wind speeds in the upper half of the EF-scale—which

FIG. 7. As in Fig. 4, but for base-tier tornado warning vs catastrophic-tier tornado warning (1 mph 5 0.447m s21,

1 kt 5 0.514m s21).

FIG. 8. As in Fig. 5, but for supercell (gold), QLCS (silver), and disorganized convective mode (black; 1 mph 5
0.447m s21, 1 kt 5 0.514m s21).
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disproportionately occur in high-end environments with very

strong Vrot signatures—combined with population density, may

provide utility in discerning wind speed damage ratings. Sutton

et al. (2006) examined population density for 49 major U.S. cities

and their surrounding exurbia and found each city’s exurbia

population density was $24 people km22 (Minneapolis/St. Paul,

Minnesota, had the lowest threshold for exurbia population

density of the cities examined). The pairing of an intensely ro-

tating storm [i.e., $70-kt (36m s21) Vrot] in a favorable environ-

ment for tornadic supercells (i.e., STP80km$ 6) was examined in

relation to different population densities (Figs. 9 and 10).

Different population density exceedance thresholds were tested

(i.e., from 0 people km22 to 50 people km22 in intervals of 5).

The population density exceedance testing indicated much of

the benefit attributed to population density occurredwhen there

was a transition from no population to population density

approaching the threshold for the lowest exurbia population

density of Sutton et al. (2006)’s list of 49 major U.S. cities.

Beyond that threshold, there was decreasing value as a result of

reduced sample size. Using a 20 people km22 threshold offered a

blend of strong discriminatory value while maintaining a rela-

tively robust sample size for rare events. Using both the lower

bound of exurbia population density from Sutton et al. (2006)

as a guide and population density’s relationship to peak DI-

estimated wind speed as a basis for discerning damage intensity,

the population density threshold was set at 20 people km22.

Many variables can potentially influence tornado damage

(or lack thereof) and resultant peak DI-estimated wind speeds,

though the most intense tornadoes generally pose the greatest

threat to life and property. Thus, the highest combination of

Vrot and STP80km [i.e., $70 kt (36m s21) and $6] was addi-

tionally stratified by population density $ 20 people km22

(Figs. 9–12). The interquartile ranges between level-4 (lower

population density) and level-5 (higher population density)

were almost completely offset (Figs. 9 and 12), and the median

peak DI wind speed difference was 30 mph (13m s21). The

minor difference in the median Vrot [5 kt (3m s21)] and

STP80km (0.6) between level 4 and 5 (Fig. 12) suggests that the

difference in population density is the primary influencing

factor in the difference in the peakDI wind speeds between the

level-4 and level-5 groups.

The peak DI wind speed distributions for levels 2–5 were

offset by roughly one quartile (comparing adjacent levels) and

the interquartile ranges between levels 1 and 3, 2 and 4, and 3

and 5 are largely offset—indicative of an ability to distinguish

between62 levels (Fig. 12). Additionally, themedian values of

STP80km increased from 0.8 to 10.1 from the level-1 to the

level-4 groups.

The different IBW tornado warning tiers (i.e., base-tier,

considerable, catastrophic) were compared usingVrot and peak

DI-estimated wind speeds during the IBW era (i.e., 2012–17;

Figs. 5, 8, and 12). The base-tier tornado warning median

values for Vrot and peak DI-estimated wind speed [38 kt

(95 mph)] were the weakest values among tornado warning

types. Considerable-tag and catastrophic-tag IBW tornado

warning median values for Vrot and peak DI-estimated wind

FIG. 9. Violin plots corresponding to rows of criteria in (x axis) vs

peak DI wind speed (mph; y axis). The 10th, 25th, 50th, 75th, and

90th percentiles are annotated. The red circles are the lower and

upper bounds of the peak DI wind speed damage estimate

(WSDE) for each category shown in Fig. 10. The color shading

corresponds to levels 1–5 in Fig. 10 (1 mph 5 0.447m s21, 1 kt 5
0.514m s21).

FIG. 10. Calibrated tornado potential damage intensity levels and peak DI wind speed damage estimate (WSDE), consisting of com-

binations of Vrot (kt), STP80km, and population density (people km22). Percentage of 0.58 DI scans within the WSDE and median wind

speed (mph) of each criterion is provided (independent sample in brackets). The independentmean absolute error (mph) and variance are

in the rightmost columns. The colors correspond to the levels 1–5 in Fig. 9 (1 mph 5 0.447m s21, 1 kt 5 0.514m s21).
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speed were markedly stronger [51 kt (26m s21), 107 mph

(48m s21); 62 kt (32m s21), 120 mph (54m s21) respectively],

matching the intent of IBW and supporting the notion that

NWS meteorologists are able to discriminate between weaker

and more intense damage-based tornado wind speeds, as rep-

resented byVrot and the near-storm environment. Furthermore,

the IBW data were also compared to the larger dataset (i.e.,

2009–17) ofVrot and peak DI wind speeds (Fig. 12). The median

values of Vrot and peak DI wind speed with the base-tier IBW

tornado warnings nearly matched our proposed level-2. The

median values of level-1 were weaker than base-tier warnings,

but level-4 and level-5 values were much stronger than

considerable-tag or catastrophic-tag IBW median values. In

summary, the proposed level 1–5 data-driven approach, uti-

lizing Vrot, STP80km, and population density, allows poten-

tially greater discrimination of tornado intensity than the

three IBW tornado warning tiers (median values of level 1–

5 span a DI wind speed range of 82 mph versus only 25 mph

for the IBW median values).

d. Independent test sample

A smaller independent dataset containing 2263 0.58DI scans

from 2019 to 2020 was compared to the 7513 0.58DI scans from

the larger dataset from 2009 to 2017 for the level 1–5 data-

driven approach using Vrot, STP80km, and population density

(Figs. 10, 13, and 14 ). The distributions of peak DI-based wind

speed from the 9 different combination ranges ofVrot, STP, and

population density were evaluated. Considerable overlap of

the interquartile ranges is evident for most of the level-1–3

parameter combinations (Fig. 13). The independent sample’s

peak DI wind speeds were weaker across their distributions for

the level-4 and level-5 0.58DI scans, but it is uncertain whether

the independent sample is considerably different due to limited

FIG. 12. Themedian values (circles) of peakDI wind speed (mph; x coordinate) andVrot (kt; y coordinate) for the

existing IBW tornado warning tiers (base, considerable, and catastrophic) vs calibrated tornado potential damage

intensity levels 1–5. Box-and-whisker plot of peakDI wind speed by levels 1–5; the hollow boxes span from the 25th

to the 75th percentile, the whiskers extend to the 90th and to the 10th percentiles, and sample sizes for each level are

shown in parentheses (1 mph 5 0.447m s21, 1 kt 5 0.514m s21).

FIG. 11. As in Fig. 10, but for wind speed ranges (mph; labeled)

mapped using STP80km (x axis) and Vrot (y axis) based on com-

binations of Vrot (kt), STP80km, and population density (people

km22). Colors for the different levels are provided in the legend to

the right (1 mph 5 0.447m s21, 1 kt 5 0.514m s21).
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sample size on the high-end of the scale, both in terms of Vrot

and EF41 DIs. The independent sample’s level-3–5 0.58 DI

scans exhibited the largest mean absolute error (Fig. 10) and

generally had higher variance.

The peak Vrot located anywhere along the entire tornado

path [i.e., Smith et al. (2015) approach], in which the peak Vrot

may not necessarily match with the peak DI-estimated wind

speeds, was also evaluated between the independent and larger

datasets. An exceedance peakVrot display (Fig. 14)
4 enables an

analysis of threshold values of Vrot during an ongoing tornado.

There is little slope to the probability curves from the 01- to

201-kt exceedance bins in Fig. 14, which suggests high confi-

dence that the clear majority of peak DI wind speed estimates

will be weak (,110 kt). The slope of the probability curves

increases notably as peak Vrot exceedance increases from 201
to 601 kt, with a correspondingly large increase (;10% at 201
Vrot to .50% at 601 Vrot) in the probabilities of 1251 mph

peakDI wind speeds. The probabilities of themost extremeDI

wind speeds become substantial as peak Vrot increases above

70kt. For example, consider a Vrot signature for an ongoing tor-

nado that strengthens from 55kt (28m s21) to 75 kt (39ms21).

Per Fig. 14, the probability of a 1401-mph (63ms21) peak DI-

estimated wind speed for the entire tornado path increases from

20%–24% to 54%–60%, based on both 2009–17 data and the

smaller independent sample. The exceedance probability distri-

butions with the independent sample were within 5%–10% of

Part I sample, especially where both samples were relatively large

[i.e., Vrot up to 701 kt (36m s21)].

e. Duration

The durations of tornadoes with Vrot $ 70 kt in environ-

ments of STP80km$ 6 were compared for cases with the entire

path affecting areas of low population density (i.e.,,20 people

km22), versus a mutually exclusive sample of tornadoes with

one or more 0.58DI scans in areas$ 20 people km22 (Fig. 15).

The low-population-density tornadoes, with ,15min of com-

bined Vrot $ 70 kt in environments of STP80km $ 6, had

entire-path peak wind speed distributions that were compa-

rable to the level-4 distribution (i.e., scan-by-scan basis in

Fig. 13). However, once a low-population-density tornadic

storm exceeded 15min of these criteria, higher final-rating

peak estimated wind speeds becomemore probable (i.e., upper

half of the level-4 distribution). The highest final-rating peak

FIG. 13. Box-and-whisker plot of peak damage indicator (DI) wind speed (mph) by 0.58DI scan# 10 000 ft above

radar level for corresponding to rows of criteria in (x axis) vs peak DI wind speed (mph; y axis) (2009–17 data are

shaded gray, labels on right). Black overlays (labels on left) denote 2019–20 data. The 10th, 25th, median, 75th, and

90th percentiles are annotated. The red circles are the lower and upper bounds of the peak DI wind speed damage

estimate (WSDE) for each category shown in Figs. 9 and 10. Sample sizes (bottom) for each set of criteria are shown

in parentheses [(top) 2009–17 and (bottom) 2019–20]. The colors correspond to the levels 1–5 in Figs. 9 and 10

(1 mph 5 0.447m s21, 1 kt 5 0.514m s21).

4 The data in Fig. 14 represent the peak values for the entire

tornado path. The sample size differences (637 tornadoes in

section 2a and 615 tornadoes in Fig. 14) are the result of incomplete

data for 22 of the tornadoes, such as missing radar data or 0.58 scans
above 10 000 ft ARL.
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estimated wind speeds were associated with tornadoes impact-

ing population footprints with $20 people km22 with the same

STP80km $ 6, Vrot $ 70kt criteria. Tornadoes with 1–5-min

durations in population density $ 20 people km22 exhibited a

similar distribution in the 10th–75th percentile values to the

level-5 events. However, as duration increased into the 6–15-

and the$15-min groupings, the distributions for the final-rating

peak estimated wind speeds increased. The data presented here

suggest that peak DI-estimated wind speeds increase (for an

entire tornado lifetime) as the duration of high-endVrot ($70kt)

increases in an environment very favorable for tornadic super-

cells (e.g., STP80km $ 6), but sample sizes are small. It is im-

portant to note that the mean values of Vrot, STP80km, and

duration were 81kt, 8.8, and 9min, respectively, for the torna-

does in Fig. 15 that never encountered $20 people km22,

compared to 93kt, 10.0, and 25min, respectively, for the tor-

nadoes that impacted areas with $20 people km22 somewhere

along their path. Thus, final-rating peak DI wind speeds of

EF31 tornadoes appear to be related to a combination of rel-

atively long durations of large Vrot in environments strongly

favoring tornadic supercells, and interactionwith areas of higher

population density (i.e., greater DoD DI availability).

4. Discussion

Ernst et al. (2018) described the desire by emergency man-

agers to receive additional information from forecasters de-

scribing tornado intensity/impact and uncertainty in order to

better respond to a real-time tornado event before damage

survey results are completed. Although the need described by

Ernst et al. (2018) preceded IBW, the three IBW tornado

warning tiers offer a first formal attempt at indirect damage

intensity forecasts for tornadoes and provide additional in-

formation that can be used by emergency managers and

broadcast meteorologists. The probability distribution for each

Vrot/STP80km combination yields probabilities for each EF

rating (not shown), but identifying an individual EF-scale

rating on a 0.58 radar scan basis will likely prove difficult.

However, the use of exceedance probabilities (Fig. 16) pro-

vides more utility to differentiate between the different

Vrot/STP80km combinations for higher EF ratings. For exam-

ple, a tornadic storm that reaches level-5 criteria for at least

one 0.58 radar scan corresponds to an 87.5% (or 7 out of 8

chance) of the tornado later becoming rated as violent (i.e.,

EF4–5). Moreover, application of this information can address

value-proposition decision making, which enables different

users to select different probabilistic thresholds.

Prior efforts to improve tornado warning lead time have

focused primarily on discrimination between weak (EF0–EF1)

and significant (EF21) tornadoes, or lead time for the onset of

significant (EF21) tornado damage, which is related to the

application of the considerable and catastrophic IBW tags. The

IBW tags are qualitative in nature, which leaves a quantitative

gap in the NWS tornado warning program. Incorporating peak

wind speed or EF-scale ranges (to account for inherent un-

certainty) into tornado warnings, in addition to and support of

the qualitative IBW tags, appears plausible based on the results

of this work and Part I. A pivot toward reproducible decision

FIG. 14. Conditional probability of peak DI wind speed exceedance (legend) for an entire tornado binned for peak

0.58 scan rotational velocity (peakVrot) [kt; x coordinate, (sample size)] anywhere along a tornado path [2009–17, solid

line; 2019–20, dotted line; from#10 000 ft (3048m) above radar level (ARL); 1mph5 0.447m s21, 1 kt5 0.514m s21].
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aids like Vrot,/STP/population density could contribute both

value and consistency in operational decision-making regarding

tornadoes, through the addition of quantitative information re-

garding potential tornado intensity. A potential transitional step

in the warning process could initially focus on targeting stronger

tornado events (i.e., level 3–5) and quantifying the diagnostic

basis for considerable and catastrophic IBW tags, in scenarios

posing the greatest threat to life and property. Both tornado

warnings and severe weather statements can provide important

nuances describing tornado intensity variations within tornado

warnings, and help improve downstream expectations and

reactions.

With this dataset, quantification of IBW tags is possible based

on relatively simple combinations of the Vrot and STP80km

criteria. An evidence-based and expanded version of IBW can

provide additional information on the real-time tornado inten-

sity risk by adding levels within the weak and intense parts of the

tornado intensity spectrum. The different combination groups of

Vrot/STP80km, which are remotely sensed or estimated in real

time, correspond to a 1–5 level of potential tornado damage

intensity scale (Fig. 12)—similar to the existing Saffir–Simpson

category 1–5 scale used for hurricanes. In addition to providing a

familiar type of scale in levels 1–5, the explicit wind speed esti-

mates can help to remove any doubt as towhether level 5 ismore

serious than level 1.An increase inVrot/STP80km-based levels is

related to an accompanying propensity for higher SPC convec-

tive outlook tornado probabilities and more significant watch

type (not shown). Implementing such a change and proposing

guidelines (e.g., Figs. 10 and 11) for a best-practices approach to

describe tornado risk is congruent with both scientific and

communication goals of NOAA’s FACETs (Rothfusz et al.

2018) vision.

5. Summary and forecaster notes

In Part I, we developed a large sample of tornadoes with both

individual DIs from the DAT and correspondingWSR-88D 0.58
Vrot, and demonstrated that Vrot and near-storm environment

(STP80km) can be combined to estimate peak DI wind speeds

on a scan-by-scan basis with WSR-88D data. This work ex-

tends the findings of Part I to develop an application to IBW for

ongoing tornadoes by combining Vrot and STP80km into a five-

level scale for expected tornado intensity within tornado warn-

ings. Based on the input parameters of Vrot and the maximum

neighborhood value of STP, the intensity scale maps out ex-

pected ranges of peak tornado wind speeds that increase as both

Vrot and STP80km increase. Themore common combinations of

relatively weak Vrot (,40kt) and low STP (,1) result in peak

tornado wind speed estimates # 110 mph (EF0–EF1 damage).

Peak tornado wind speed estimates increase into the EF2–EF3

range (115–145 mph) for midrange combinations of Vrot (;45–

65kt) and STP (;1–3; corresponding primarily to levels 2–3 in

Figs. 9 and 10). Violent tornadoes (EF41 damage and peak

wind speeds $ 166 mph) become a possibility for the high-end

Vrot ($70kt) and STP80km ($6) combinations. The expected

value of the proposed scale will be to provide simple and re-

producible estimates of tornado intensity in real time, with po-

tential applications within the framework of IBW.

Consistent real-time application of the suggested five-

level scale, within the context of tornado warning time

FIG. 15. Box-and-whisker plot of peak damage-estimated wind speed (mph) by population

density and duration (min) of Vrot $ 70 kt with STP80km $ 6. Tornadoes with population

density, 20 people km22 during their entire paths are plotted in the red boxes, and the sum of

the duration of individual scans where population density was.20 people km22 for a mutually

exclusive sample of tornadoes are plotted in the magenta boxes. The 10th, 25th, median, 75th,

and 90th percentiles are annotated with minimum and maximum values (circles). Sample sizes

(bottom) for combined events from 2009–17 and 2019–20 samples. All five of the EF5 torna-

does’ wind speeds were adjusted to 205 mph (1 mph 5 0.447m s21, 1 kt 5 0.514m s21).
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scales, may ultimately depend on a combination of factors.

Three critical factors in estimating tornado probabilities (in

the absence of direct evidence of an ongoing tornado) are as

follows:

1) Proper interpretation of velocity (Vrot) data to avoid known

concerns such as sidelobe contamination (Piltz and Burgess

2009), improper dealiasing, and range folded data.

2) Incorporation of unconditional tornado (EF01) probabil-

ities in the lower portions of the Vrot distribution, poten-

tially accounting for the effects of circulation diameter and

radar range (e.g., T17).

3) Incorporation of nonconvectively contaminated, near-storm

environment information (e.g., maximum STP value within

an 80-km radius).

Additional considerations for explicit peak tornado intensity

estimates are:

4) Generally more than one Vrot scan as a basis for decisions,

especially for suspected high-impact tornadoes.

5) High-confidence, corroborating evidence of an ongoing

tornado (TDS or spotter reports).

The rare combination of criteria constituting a level-5 event

(i.e., extreme Vrot [$70 kt (36m s21)], a very favorable envi-

ronment (STP80km $ 6), and a population center with an

imminent tornado impact) is designed to help identify the

likelihood of extreme tornado damage with peak DI wind

speeds in the EF4–EF5 range [e.g., $170 mph (76m s21)]. As

the duration of these high-end events increases (extreme Vrot

in a large STP environment), the odds increase that an in-

tense tornado will be revealed via surveyed damage, espe-

cially in more densely populated areas. The research to

operations (R2O) application of this work spans the con-

struction of the level 1–5 methodology and bridges the gap

to the operational community tasked with real-time identi-

fication of rare-event forecasting, and enables meteorolo-

gists the opportunity to provide consistent and credible

messaging of rare ongoing events.
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