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1.  INTRODUCTION 

Every spring, the Experimental Forecast 

Program (EFP) of the NOAA/Hazardous 

Weather Testbed (HWT) conducts the Spring 

Forecasting Experiment (SFE). This 

collaborative experiment is organized by the 

Storm Prediction Center (SPC) and the National 

Severe Storms Laboratory (NSSL). The 2024 

edition of the HWT SFE (in-person and virtual) 

took place in the National Weather Center in 

Norman, Oklahoma. The 2024 SFE occurred on 

weekdays, excluding Memorial Day, between 29 

April and 31 May 2024 (24 days). 

SFE activities occurred over a seven-hour 

schedule each day. The first two-hour block 

each Tuesday through Friday consisted of the 

prior day (deterministic and ensemble) 

convective allowing model (CAM) and forecast 

evaluations. A suite of new and improved 

experimental CAM products was contributed by 

a large group of SFE collaborators. As in prior 

SFEs, all contributed CAMs where a part of an 

ensemble framework called the Community 

Leveraged Unified Ensemble (CLUE; Clark et al. 

2018). Each year the CLUE is constructed by 

using common model specifications (e.g., grid-

spacing, domain size, post-processing, etc.) so 

that CAM output from each contributor can be 

used in various controlled experiments. 

Additionally, the High-Resolution Ensemble 

Forecast system version 3 (HREFv3) and High-

Resolution Rapid Refresh Version 4 (HRRRv4) 

were evaluated as operational modeling 

baselines. 

Annual goals of the SFE include to accelerate 

research-to-operation (R2O) activities, promote 

operationally relevant research, and explore the  
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the performance of CAM systems. Due to the 

proposed timeline of the Unified Forecast 

System (UFS) for future forecast model 

implementations and the retirement of legacy 

systems, the 2024 SFE had specific research 

objectives. A few of these objectives included, 

(1) evaluate the Rapid Refresh Forecast System 

(RRFS) deterministic run against the HRRRv4 

and (2) evaluate the RRFS Ensemble Forecast 

System (REFS) against the HREFv3. An 

emphasis was also placed on accessing 

applications of severe weather forecasting for 

the REFS/RRFS and HREFv3/HRRRv4 

systems. 

Daily participant subjective ratings (1-10) of the 

various ensembles and deterministic models 

(00Z and 12Z cycles) were accumulated over all 

24 days of the 2024 SFE. This study looks to 

add quantitative verification metrics, in addition 

to the subjective ratings, to evaluate each of the 

listed CAM’s performance over the entire 2024 

SFE.  

2.  DATA AND METHODS 

2.1  RRFS AND REFS 

The REFS, an updated version of the RRFS 

ensemble (SFE 2023), was created as part of 

the NOAA UFS initiative. The UFS is a 

community that includes researchers, 

developers, and users from NOAA, federal 

agencies, academia, and the private sector. This 

community was tasked with developing, 

improving, and implementing a new simplified 

suite of weather prediction systems for NOAA. 

NOAA’s current suite of forecasting models 

consists of many independent forecast systems, 

each of which must be maintained and improved 

separately. The simplification of the model suite 

to a single system could increase the efficiency 

of future system maintenance and development. 



 

Fig. 1. SFE 2024 version of the REFS ensemble 

member configurations. 

The REFS is a fourteen-member, time-lagged 

ensemble. The RRFS is the control member of 

the REFS where an additional five members are 

created from perturbations of the RRFS initial 

conditions (ICs). The HRRRv4 is also included 

in the REFS ensemble. The remaining seven 

members consist of 6-h time-lagged duplicates 

of the previously mentioned members. Further 

REFS member configurations (ICs, LBCs, etc.) 

are shown (Fig 1). A major difference between 

the REFS and HREFv3 ensembles is the 

inclusion of deep convection parameterization 

schemes in all REFS members (excluding the 

HRRRv4). The RRFS and three perturbed REFS 

members use the Grel-Freitas (GF) deep 

convection parameterization scheme while the 

remaining two perturbed REFS members use an 

updated scale-aware Simplified Arakawa-

Schubert (saSAS) scheme. This is the first 

instance of a CAM ensemble being evaluated in 

the SFE with parameterized deep convection. 

With the UFS’s intent for the REFS to replace 

the currently operational HREFv3, evaluation of 

the REFS during the 2024 SFE was a major 

objective. 

2.2  HREF 

The HREFv3 is a ten-member, multi-dynamical 

core, mixed-physics, and time-lagged ensemble. 

The five non-time-lagged members consist of 

the High-Resolution Window Advanced 

Research version of the Weather Research and 

Forecast Model (HRW ARW), the HRW NSSL 

model, the North American Mesoscale (NAM) 

CONUS Nest, the HRW Finite Volume Cubed 

Sphere (FV3) model, and the HRRRv4. The 

remaining five members consist of 12-h time-

lagged duplicates of the HRW members and 

NAM CONUS Nest, and the 6-h time-lagged 

initialization of the HRRRv4. Further details on 

each member’s configuration is also provided 

(Fig. 3). This study performed verification of the 

composite reflectivity (REFC) variable from the 

HREFv3. 

 

Fig. 3. SFE 2024 version of the HREFv3 

ensemble member configurations. 

2.3  MULTI-RADAR/MULTI-SENSOR SYSTEM 

The Multi-Radar/Multi-Sensor System (MRMS), 

developed at the NSSL, is a fully automated 

system that quickly integrates data from multiple 

radars, surface and upper air observations, 

lightning detection systems, satellite 

observations, and forecast models. MRMS 

products aid in the detection of severe weather 

hazards (tornado, wind, and hail), precipitation 

estimations, convection, and several other 

products (Zhang et al. 2011). MRMS hourly 

merged composite reflectivity (quality controlled; 

REFC) was used as the observational dataset 

for the REFC verification. A 40 dBZ REFC 

threshold is frequently associated with 

convective storms, making it suitable to be used 

in this study for evaluating ensemble skill in 

severe weather forecasting applications. 

2.4  METPLUS 

The Model Evaluation Tools (MET) software was 

developed by the Developmental Testbed 

Center (DTC) with support from the 557th 

Weather Wind of the United States Air Force, 

NOAA, and the National Center for Atmospheric 

Research (NCAR). MET is designed to be a 

customizable suite of verification tools. MET’s 

goal is to provide a framework for reproducible 

verification methods and results. METplus, 

contains the core framework and tools of MET 

with additional python wrappers to improve 

automation and functionality. METplus will also 

be integrated into the UFS framework as an 

important tool for verification. This study 

specifically used MET V10.0 and METplus V5.0. 

Members: REFS 



For this study, deterministic models were 

evaluated using the METplus GridStat tool and 

ensemble systems were evaluated using the 

METplus EnsembleStat tool. All verification 

metrics were calculated for each hour of the day 

by convective day (12z – 12z) throughout the 

SFE. Verification metrics were then accumulated 

over each hour to produce statistics over the 

entire SFE period. The full period statistics were 

calculated by using the raw hourly 2x2 

contingency table results. 

 

Fig. 4. Simplified diagram of how REFC forecast 

and MRMS observation fields are processed 

before verification. 

Deterministic models were evaluated using a 

binary 40-km circular neighborhood with a >=40 

dBZ REFC threshold. Ensemble systems were 

also evaluated using a 40-km circular 

neighborhood with the same >=40 dBZ REFC 

threshold. A neighborhood maximum ensemble 

probability (NMEP) of REFC was used for the 

verification of each ensemble system. A 

simplified example of how forecast and 

observation data were processed is shown (Fig. 

4).  Both deterministic and ensemble forecast 

systems used the MRMS merged composite 

reflectivity as the observational dataset. 

3.  RESULTS 

3.1  DETERMINISITC CAM VERIFICATION 

Examining the verification metrics of each REFS 

and HREFv3 member (00z cycle) reveals 

interesting REFC performance characteristics. 

The HRRRv4, an ensemble member of both the 

HREFv3 and the REFS, is the clear top 

performer compared to all other ensemble 

members. Even the 6-hr time lagged HRRRv4 

was found to outperform all other ensemble 

members (time lagged and non-time lagged 

members) in terms of CSI. Other members of 

the HREFv3 and the REFS (excluding the 

HRRRv4) were shown to have similar skill 

metrics (CSI). However, the bias characteristics 

of each ensemble’s members were found to 

differ. HREFv3 members were shown to have a 

bias of >1, while REFS  

 

Fig. 5. RRFS and HREFv3 performance diagram 

over the entire 2024 SFE period. REFS 

members are shown by the circles. HREFv3 

members are shown by the stars. HRRRv4 is 

the red star. RRFS is the blue star. REFS M02, 

M05 are circled. 

members (excluding the HRRRv4) were shown 

to have a bias of <1 (Fig. 5). Similar bias metrics 

for ensemble members of the HREFv3 and the 

REFS were found for the 12z cycles of all 

members (not shown). 

When comparing the HRRRv4 to the RRFS (i.e., 

REFS control member) the HRRRv4 

outperformed the RRFS in terms of CSI. Looking 

closer, much of the advantage of the HRRRv4 

comes from an increased probability of detection 

(POD) compared to the RRFS (Fig. 5). Both 

deterministic models were found to have a 

similar false alarm ratio (FAR). Similar results for 

the HRRRv4 versus the RRFS were also found 

for the 12z cycle of each model (not shown). 

It was also found that the RRFS control member 

was not the best performing member of the 

REFS, which is not a desirable characteristic of 

the REFS design. When excluding the HRRRv4, 

the best performing members of the REFS were 

members two (M02) and five (M05) (Fig. 5). 

These two members (M02 and M05) were the 

M02 
M05 

 



only REFS members that used the saSAS deep 

convection parameterization scheme (other 

members used the GF convection scheme). 

SFE participants were tasked with daily rating 

(1-10) deterministic models based on each 

model’s REFC field compared to observations 

(MRMS REFC). Participant’s subjective ratings 

were accumulated across all SFE days to rank 

each model in terms of subjective rating. The 

HRRRv4 received the highest mean rating from 

participants during the 2024 SFE. When 

compared to the mean rating of the RRFS, the 

HRRRv4 had statistically significantly higher 

mean ratings. Additionally, both the 25th and 

75th percentile of subjective ratings for the 

HRRRv4 were higher than the RRFS (Fig. 6). 

 

Fig. 6. The subjective ratings of the Day 1 00z 

cycle deterministic flagship models from 2024 

SFE. The RRFS is shown as the red violin. The 

HRRRv4 is shown as the green violin. 

3.2  CAM ENSEMBLE VERIFICATION 

The 2024 SFE verification metrics of the 

HREFv3 and REFS showed intriguing results, 

especially following the deterministic RRFS 

control member results. Performance metrics for 

each ensemble were calculated for 10% bins 

(i.e.,10% - 100%) of the NMEP REFC field 

(>=40 dBZ). Performance metrics for both the 

HREFv3 and REFS were shown to lie along the 

same performance curve. The primary 

differences in performance metrics occurred in 

the POD and FAR space, particularly for lower 

NMEP intervals (<50%) (Fig. 7). In terms of 

forecast reliability, the REFS actually had better 

reliability than the HREFv3 at the lower REFC 

NMEPs (<50%). Above the 50% forecast NMEP, 

the REFS and HREFv3 were very similar in their 

forecast reliability (Fig. 8). 

 

Fig. 7. REFS and HREFv3 performance diagram 

over the entire 2024 SFE period. The REFS is 

shown in the circle shapes. The HREFv3 is 

shown in the star shapes. Each color represents 

a NMEP ranging from 10% - 100%. 

SFE participants also were asked to rate (1-10) 

the REFC NMEP field of both the HREFv3 and 

the REFS compared to MRMS observations 

(>=40 dBZ contour). Participant ensemble 

subjective ratings were accumulated over the 

entire SFE. Participant REFC ratings for each 

ensemble were found to be similar with a slight 

advantage to the HREFv3 (Fig. 10; red box). 

Fig. 8. REFS and HREFv3 reliability diagram. 

The REFS is shown with the blue line. The 

HREFv3 is shown with the orange line.  



 

Fig. 9. The subjective ratings of the day 1 00z 

REFS and HREFv3 from the 2024 SFE. 

Ensemble variables are highlighted by color. 

Subjective REFC ratings are shown with the red 

bar. Values below 0 indicate the HREFv3 was 

rated higher. Values above 0 indicate the REFS 

was rated higher. 

4.  DISCUSSION 

The REFC verification of the HREFv3 and 

REFS, and their respective members, provided 

interesting results. While individual member 

REFC performance between these two 

ensembles was similar in terms of CSI, the 

HRRRv4 was a clear top performer among all 

members. Also of note was the individual bias 

characteristics of each ensemble’s members. 

REFS members (except the HRRRv4) were 

shown to have a bias of <1.0, while HREF 

members had a bias of >1.0 (Fig. 5). The low 

REFC bias found with REFS members is likely 

due to the use of deep convection 

parameterization schemes for each member. 

Throughout the SFE, participants and facilitators 

noted several cases, particularly with the RRFS 

control member, where the deep convection 

scheme negatively impacted the REFC forecast. 

The RRFS missed several high REFC (>40 dBZ) 

areas on High or Moderate risk (SPC categorical 

outlooks) days during the SFE period. These 

misses occurred across all types of storm 

modes (linear, supercell, single cell, etc.) and 

typically showed areas of light reflectivity instead 

of the high (>40 dBZ) REFC values that 

occurred with observations (Fig. 10). 

Suppression of the deep convection in the 

RRFS also seemed to occur across differing 

forecast hours. In comparison, the HRRRv4, 

while not producing perfect REFC forecasts, at 

least showed the possibility of deep convection 

over the areas where severe hazards occurred 

(Fig. 10). 

 

Fig. 10. REFC from the SFE 2024. Row one – 

HRRRv4, RRFS (21Z) valid 7 May 2024 06Z 

(F09). Row two- HRRRv4, RRFS (00Z) valid 20 

May 2024 01Z (F01). Row three – HRRRv4, 

RRFS valid 8 May 2024 06Z (F09). 

The REFS members using the GF deep 

convection schemes were shown to perform 

worse than REFS members using the saSAS 

convection scheme. During the SFE several 

high-end severe weather events highlighted this 

performance discrepancy between REFS 

members. The 7 May 2024 (02Z) Barnsdall 

tornado (EF4) was very well forecast with REFS 

M02, where the RRFS was not suggesting any 

discrete cells ahead of the linear system. The 

RRFS was suppressing the deep convection 

over northeastern Oklahoma only showing low 

REFC (<25 dBZ) was being forecast (Fig. 14). 

Similarly, REFS M05 forecast the tornadic 

outbreak on 8 May 2024 better than the RRFS. 

REFS M05 was forecasting higher (>=40 dBZ) 

REFC values over the correct area showing the 

possibility of severe hazards for this day (Fig. 

12). The RRFS again failed to develop deep 

convection over the area of interest, entirely 

missing the tornadic event on this day. 

The use of deep convection parameterization 

schemes in REFS members seemed to lessen 

the over forecast bias of previous CAMs. 

However, this negatively impacted the 

REFS, HREFv3 2024 SFE 

Subjective Ratings 



probability of detection (POD) of REFC values 

>=40 dBZ. For severe weather forecasting a 

higher POD is typically desired as the penalty for 

over forecasting a severe event is not as 

impactful as missing the event entirely. A 

comparison of the HRRRv4 and the RRFS also 

shows a nearly identical false alarm ratio (FAR) 

between the two models, but the HRRRv4 

greatly outperforms in terms of POD. These full-

period objective statistics were also observed 

during individual forecast days within the SFE 

and were reflected in SFE participant subjective 

ratings. 

 

Fig. 11. REFC from RRFS, REFS M02, 

HRRRv4, and MRMS observations. All model 

cycles are 12Z (6 May) valid for 02Z 7 May 2024 

(F14). 

Even with the REFS members’ use of deep 

convection schemes and the superior 

performance of the HRRRv4, the overall 

performance of the HREFv3 and REFS 

ensembles were similar.  The impact of using 

parameterized deep convection may be seen on 

the REFC NMEP performance diagram, showing 

lower POD from the REFS at <50% NMEP. 

However, all NMEPs lie on the same 

performance curve further highlighting the two 

ensembles similar performance. The 2024 SFE 

version of the REFS was also the first ensemble 

to outperform the HREFv3 in terms of reliability 

at any NMEP interval (Fig. 8). However, it 

should be noted that the HRRRv4 is an 

ensemble member of both the HREFv3 and the 

REFS. Ongoing work (not shown), has shown 

the HRRRv4 to be a large contributor to 

ensemble performance metrics (CSI, POD) for 

both the REFS and HREFv3, potentially leading 

to the similar ensemble performance that was 

found. 

 

Fig. 12. REFC from RRFS, REFS M05, 

HRRRv4, and MRMS observations. All model 

cycles are 00Z (8 May) valid for 02Z 9 May 2024 

(F26). 

5.  SUMMARY 

The 2024 SFE successfully provided subjective 

verification of the HREFv3 and REFS 

ensembles, as well as key deterministic models. 

This study objectively assessed these CAM and 

CAM ensembles on applications for severe 

weather forecasting. Composite reflectivity 

verification metrics of each ensemble member 

(00Z) were provided. While the HRRRv4 was 

found to greatly outperform the RRFS, the 

performance of the REFS was shown to be 

comparable to that of the HREFv3. The use of 

deep convection parameterization schemes in 

each of the REFS members (except the 

HRRRv4) was found to negatively affect REFC 

(>=40 dBZ) forecasts, especially those using the 

GF scheme. REFS members using the saSAS 

deep convection scheme performed better than 

those using the GF scheme. Switching the 

RRFS (REFS control member) deep convection 

scheme to the saSAS scheme has been shown 

to provide a boost in REFC forecast 

performance in retrospective testing following 

the SFE. Given the REFC forecast performance 

of the RRFS, compared to the HRRRv4, model 

configuration adjustments might be necessary 

before use in operational severe weather 

forecasting. However, the current performance 



of the REFS appears to be comparable to the 

HREFv3, at least in terms of REFC (>=40 dBZ) 

forecasts, especially because it includes two 

HRRRv4 members. 

The objective verification of these forecast 

systems is essential for the advancement of the 

UFS goals. The annual SFE also plays an 

important role in assessing experimental 

ensembles in real-world severe hazard 

forecasting applications. The combination of the 

SFE subjective ratings and this study’s objective 

verification metrics aim to provide feedback and 

potential concerns regarding potential model 

implementations and retirements, including 

implementation timelines. Further evaluation of 

these forecast systems will be necessary to 

advance and improve future model 

development. 
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