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1. INTRODUCTION

Mesoscale convective systems (MCSs; e.g.,
Zipser 1977, Houze 1993, Parker and Johnson
2000) are a common mode of severe
thunderstorms over the contiguous United
States (CONUS), and are especially prone to
producing severe (25.7 m s-1/50 kt, or damaging)
straight-line winds. The scope and severity of
these winds varies widely across the spectrum
of MCSs, from systems that produce no severe
wind to derechos (Hinrichs 1888, Johns and Hirt
1987) that produce widespread significant
severe (33.4 m s-1/65 kt) wind over swaths that
can exceed 1000 km in length.

Especially in the wake of high-profile, destructive
events on 29 June 2012 and 10 August 2020,
National Weather Service (NWS) Weather
Forecast Offices as well as the NWS Storm
Prediction Center (SPC) often receive questions
from the media and the public about whether
certain damaging wind events are derechos.
The qualitative definition is mostly undisputed: “a
widespread convectively induced straight-line
windstorm” (American Meteorological Society
2023). However, the quantification of this
definition to designate individual MCSs as
derechos or not derechos has long posed a
challenge (Squitieri et al. 2023a).
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Quantitative criteria vary across at least nine
major studies of derechos. SPC aims to unify
these, resolving the conflicts among them, into a
standard, operationally applicable set of criteria
for derechos. This goal requires as
comprehensive a sample of MCSs as possible
to ensure that all major historical events widely
recognized as derechos meet the operational
criteria, as well as to estimate the climatological
frequency and geographic distribution of MCSs
meeting these criteria. Any attempt to find all
MCSs in the CONUS over a long period and
assign wind reports to each one must be
automated to some extent. But this automation
should not consist of a “black box”; forecasters
must be able to apply the same method to a
single MCS that has just occurred and
understand why it was or was not identified as a
derecho-producing MCS.

Haberlie and Ashley (2018a, 2018b, 2019)
compiled a climatology of MCSs by extracting
mesoscale features from radar reflectivity
mosaics and training a machine learning model
to distinguish MCSs from other features. While
this dataset is likely very close to what is needed
for a broad climatology of derechos and other
severe MCSs, day-to-day operational use on
individual MCSs may require interpretability,
consistency, and tunability beyond that of the
underlying model. So in this abstract, we
describe an algorithm that identifies MCSs with
explicit, fixed thresholds of certain radar
reflectivity-based variables. The fields and
thresholds used are primarily informed by



Fig. 1. Demonstration of MCS identification and tracking algorithm steps at 16, 17, 18, and 19 UTC 10
August 2020, including initial IEM reflectivity mosaics (a-d); remaining reflectivity after masking certain
non-convective-line regions (e-h); identification of all 40-dBZ polygons, highlighted in magenta in panels
(i-l); merging of nearby 40-dBZ polygons, with resulting convective areas highlighted in magenta in (m-p);
identification of convective lines meeting length criterion, highlighted in magenta in (q-t); and tracking
(u-x), in which the magenta polygon is the current MCS, the black polygon is the MCS at the prior

15-minute interval, the black dashed polygon represents the tracking radius whose area of intersection
with new MCS polygons is used to prioritize matching, and the gray polygons are the MCS at the previous

hours shown in this figure.

Haberlie and Ashley’s (2018a, 2018b) most
important predictors combined with the
characteristic time and length scales of MCSs.
Further tuning was done via trial and error on a
varied set of historical derechos across regions
and seasons to ensure their successful
identification.

As intended, the resulting set of MCSs enables
refinement of derecho criteria, described in more
detail in the companion presentation Squitieri et
al. (2023b). It also allows for a long-term
climatology of wind production by severe but
sub-derecho MCSs, which is relatively
unexplored. We show basic climatological
characteristics of the dataset, and demonstrate



future work on the synoptic and mesoscale
environments of different classes of MCSs.

2. DATA AND METHODS

2.1 Identification of instantaneous MCS
structures in radar reflectivity

The algorithm begins with CONUS-wide radar
reflectivity mosaics from the IEM archive (Iowa
State University 2001), which have pixel
dimensions on the order of 1 km. First, two types
of non-MCS regions are masked: regions
outside 81-pixel square neighborhoods of any
50-dBZ pixel, and regions with 21-pixel square
neighborhood mean reflectivity less than 25
dBZ. The former criterion excludes features with
only weak convective characteristics or none at
all; the latter excludes small, isolated convective
cells and most radar artifacts, like ground clutter,
anomalous propagation, and sun spikes.

After masking these regions, all remaining
polygons of 40 dBZ are given a 5-km buffer, and
any that intersect as a result are merged. This
closes small gaps in convective lines. For each
remaining 40 dBZ polygon, the length of the
diagonal of the bounding box is calculated. This
must be at least 150 km [exceeding the 100 km
length scale defining an MCS (Parker and
Johnson 2000) because the long axis of the
convective line often does not lie on the diagonal
of the box]. Then, two intensity checks are
performed: the polygon must contain at least
100 pixels of 50 dBZ or greater, and at least
0.01 such “intense” pixels per square kilometer
of polygon area. The 50 dBZ area is an
important predictor in Haberlie and Ashley’s
(2018a) machine learning identification of MCSs.
Any polygons that meet all of these criteria are
given an additional 20-km buffer to attempt to
capture gust fronts that may surge outside of
MCSs’ main precipitation fields. Any individually
qualifying polygons that intersect as a result of
this buffer are merged.

2.2 Temporal tracking and storm report
matching

A 15-minute step is used for tracking across
time. MCS polygons at the previous timestep are
sorted by area and, proceeding from largest to
smallest, matches at the current timestep are
sought. A 100-km tracking radius is added to the
previous timestep’s polygon, and the current
polygon with the largest intersection with it is
matched to it. Matching is unique, so that
post-merger or pre-split segments are not
double-counted as part of two separate MCSs.
In the case of a merger, the smaller MCS at the
last pre-merger timestep is terminated; in the
case of a split, the segment with the largest
intersection with the previous timestep’s tracking
radius is assigned to the existing MCS, and the
other segment(s) may begin new MCS objects if
they meet criteria. A one-timestep grace period
is allowed to avoid terminating MCSs whose
convective lines are briefly broken by radar
artifacts/blockage. If an MCS cannot be matched
to a new polygon for two consecutive timesteps,
it is terminated. Only MCSs that have persisted
for at least 3 h are stored. Fig. 1 demonstrates
the identification and tracking process with an
example case.

After each timestep, all thunderstorm wind local
storm reports (LSRs) of 50 kt or greater in the
past 15 minutes that fall within 10 km of the
MCS polygon are assigned to the MCS. Each
MCS object is saved as three lists: the
reflectivity polygons with their coordinates, the
times at which those polygons are valid, and the
LSR objects assigned to the MCS. Each LSR
object has attributes such as time, coordinates,
magnitude, magnitude type (estimated or
measured), etc.

Finally, after the tracking process is completed,
MCSs within 500 km and 6 h of any tropical
cyclone center are removed.



3. RESULTS

3.1 MCSs

20,400 MCSs were identified from 1 January
1996 through 31 December 2021. These MCSs
were most common in a broad region including
the Southern and Central Plains, the Ozarks, the
Midwest, the lower Ohio Valley, the middle and
lower Mississippi Valley, and the central Gulf
Coast (Fig. 2). MCSs were seldom identified
west of 104 degrees west longitude, owing to
both the actual rarity of MCSs and the limitations
of radar coverage. The spatial distribution and
the local frequencies of MCSs are consistent
with Haberlie and Ashley’s (2019) machine
learning-based climatology; the primary
difference is a lower frequency of MCSs in the
Gulf Coast states in the present study.

3.2 Severe MCSs

Severe MCSs (Fig. 3), defined for this study as
MCSs matched to at least one report of severe
wind, were a majority of all MCSs identified. In
particular, in the most MCS-prone corridor from
the Central and Southern Plains to the
Tennessee Valley, roughly three-quarters of
MCSs were severe. This increases confidence
in the quality of MCSs identified.

By matching LSRs to MCSs, this dataset
enables stratification of MCSs by severity. For
example, arbitrary classes of “marginally severe”
(1–10 LSRs and no significant severe, n = 2796)
and “significantly severe” (5 or more significant
severe, n = 405) warm-season [May–August,
after Coniglio et al. (2004)] MCSs may be
compared. A peak time and location for each
MCS is determined using the maximum density
of severe (significant severe for the latter class)
reports. Then composites are created from
SPC’s objective analysis (SFCOA; Bothwell et
al. 2002) valid at the peak times and centered
on the peak locations. Composites of the
derecho composite parameter (DCP; SPC
2023), which combines most-unstable
convective available potential energy (CAPE),

downdraft CAPE, 0–6-km bulk shear, and
0–6-km mean wind, reveal that the mean
environments of these two sets of MCSs are
dramatically different (Fig. 4). [Note that DCP
was unavailable for a small minority of cases
early in the study period.] This basic experiment
suggests much deeper environmental analysis
will be possible with the MCS dataset.

4. CONCLUSIONS

4.1 Summary

Automated radar reflectivity-based identification
and tracking finds over 20,000 MCSs in 26
years. The spatial distribution is largely
consistent with other literature, showing a
maximum in MCS frequency from the
Kansas-Oklahoma border to the lower Ohio and
Tennessee Valleys. Most identified MCSs
produced at least one severe wind report. In a
simple demonstration of how the dataset may be
applied, groups of significant severe and
marginally severe MCSs appear to have
markedly different characteristic environments.

4.2 Future work

Fine-tuning of algorithm features continues,
particularly with respect to LSR matching, as
using a tight spatiotemporal window can exclude
MCS-related reports that are imprecisely timed
relative to reflectivity, or that result from gust
fronts surging unusually far from precipitation.
2022 MCSs will be added to the dataset after
they are checked against tropical cyclone
locations. Quality control is also ongoing among
derecho and possible derecho cases by the
proposed criteria of Squitieri et al. (2023b),
which are themselves still under internal review.
While it is possible that a few borderline events
have been lost or divided into multiple MCSs by
tracking failures, manual inspection confirmed
reasonable tracking of all major historical
derechos during the period. Of the current set of
derecho candidates, fewer than 10 percent
required manual corrections to tracking or report
matching to meet the working criteria.



Fig. 2. Annual frequency of MCSs automatically identified from radar, 1996–2021 inclusive.

Fig. 3. As in Fig. 2, but for MCSs producing at least one severe wind report.



Fig. 4. Composites of DCP centered on the peak
locations (X) of the (a) marginally and (b)

significantly severe warm-season MCS sets
described in section 3.2.

A comprehensive set of thousands of MCSs with
matched wind reports offers many future
research opportunities. Environmental
compositing after the example in section 3.2 is
promising. Objective clustering of
derecho-producing MCSs by characteristics of
the 500-hPa height field has been preliminarily
successful, and wind probabilities in operational
convection-allowing guidance for various
classes of severe MCSs will also be explored.
Though outside of SPC’s focus, the dataset may
have utility for studies of extreme rainfall. Finally,
the MCS dataset continues to serve its original

purpose of testing and refining operational
criteria for derechos.
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